
V E R S I O N 1.0 m i k r o S D K M A N U A L Page 1

P R O G R A M M E R’ S
M A N U A L
V E R S I O N 1.0

December, 2017.

Page 2 m i k r o S D K M A N U A L V E R S I O N 1.0

T A B L E O F C O N T E N T S

Preface 03
Analysis 04

Click Library 07
Introduction 07
HAL (Hardware Abstraction Layer) 08
Compiling of the HAL 09
HAL implementation 10

 Driver Layer 16
 Driver implementation 17
 Library Documentation 19
mikroBUS API 20

Introduction 20
mikroBUS API compiling 21
mikroBUS API implementation 22
 mikroBUS API modules 22
 mikroBUS API types 23
 mikroBUS API public functions 24

Demo application code 27
Introduction 27
 Source file 27
 Project file 27
 Project configuration file 27
 Additional types 28
 PLD file 28
Demo application code implementation 28
Application example 29

Coding rules 32
Introduction 32
 Files and folders organisation 32
Source coding rule 35
 Key rule 35
 Other rules 35

Practical usage of the mikroSDK in mikroE compilers 40
Document history 42
Software license 42

Page 2 m i k r o S D K M A N U A L V E R S I O N 1.0 V E R S I O N 1.0 m i k r o S D K M A N U A L Page 3

P R E F A C E

This document explains the mikroSDK as the software development kit used for the

portable application code development, but also as the implementation of the mikroSDK

standard.

The mikroSDK standard describes all the components of the mikroSDK, along with a set

of rules that must be followed to ensure that the future improvement and extensions

of the mikroSDK will be compatible with the already developed content. The aim of the

mikroSDK standard is to establish a well-defined form of content, which will be provided

as a software support for the existing click boards™ product line. This standard also

defines rules that must be followed, so that the further extension of the mikroSDK is

possible, without breaking the backward compatibility.

Libraries that are part of the mikroSDK and that are developed according to the mikroSDK

standard can easily integrate future extensions such as the additional architectures and

development systems, without any or with minimal changes of the previously developed

implementation.

This document also contains additional descriptions regarding the coding rules, key

functions documentation, the application code, descriptions of the additional files

included - and the package format.

The mikroSDK is composed of a number of various libraries and function calls, divided

into two separate layers:

 ∫ click libraries

 ∫ mikroBUS API

The click library layer is strictly focused on the click board™ itself. The click board™ can

be equipped with a wide range of different sensors, actuators, displays and other types

of integrated circuits.

The mikroBUS API is focused on development systems and microcontrollers used for

development and prototyping. It covers a wide range of different architectures and

vendors.

Both layers must stay compatible and future improvements must be strictly defined, according

to the mikroSDK standard.

Page 4 m i k r o S D K M A N U A L V E R S I O N 1.0

Each mikroSDK layer must be capable to carry extensions of any other layer. Each new
extension will not break the backward compatibility.

The main goal of the mikroSDK standard is to establish a set of rules so that the
provided solution has a strictly defined form and structure. This allows for the code to
be reusable and independent of used hardware platform or MCU architecture, as long
as it stays mikroSDK standard compliant.

In addition to these two layers, provided demo application code can be considered as the

additional, third layer. The purpose of the demo application code is to demonstrate the

basic functionality of a certain sensor, actuator or any other device for which the code is

developed. The developers can use those simple demo applications as a starting point

for their own application development. Also, some parts of the demo application such as

the configuration variables, are defined by the mikroSDK standard.

ANALYSIS

The structure of the software provided with the various click boards™ so far, can be

divided into two main parts: the library and the example code (Figure 1).

Click library
LIBRARY FUNCTIONS

MCU

Application code
LIBRARY CALLS

PERIPHERAL SETUP

PERIPHERAL CALLS

Figure 1: The structure of the usual click board™ supporting software

The diagram in Figure 1 shows two main parts and their subparts. The marked subparts

represent an architecture-dependent code, which means that the code for each of these

marked subparts should be redeveloped for every new architecture and development

system.

The mikroSDK standard solves the problem of code redevelopment by making each of

SUMMARY

NOTE

Page 4 m i k r o S D K M A N U A L V E R S I O N 1.0 V E R S I O N 1.0 m i k r o S D K M A N U A L Page 5

This way, most of the layer code that is identical for all the click boards™ that use

the same peripheral, can be reused. Also, the application code and the Driver code is

identical for all the supported architectures and it is independent of the underlying

architecture on which the code is being executed. This code modularity, allows specific

layers to be swapped according to needs so that the specific layer code does not have

to be redeveloped every time.

mikroBUS API and the HAL have fully defined interfaces, required to be implemented for

the successful porting, which leads to the possibility to have easy-to-use templates as

the starting point for extending the mikroSDK with the new architectures and platforms.

Compared to that, the Driver layer should be able to be compiled on every ANSI C

compliant compiler.

Further analysis will be done by dividing the mikroSDK to its elements like shown in

Figure 2: the click library, the mikroBUS API layer, and the application code. Each of

Application code

Click library

DRIVER FUNCTIONS DRIVER INITIALIZATION

PLD

mikroBUS API

MCU

BOARD DEFINITIONS

PERIPHERAL INITIALIZATIONCONFIGURATION

HAL

mikroSDK

Figure 2: mikroSDK, separated in 3 main elements: click library, mikroBUS API and application code

the architecture-dependent parts of the library and the application code - reusable. The

purpose of the standard is to prescribe a set of rules, which place all the architecture

dependent code inside the specific layers.

Page 6 m i k r o S D K M A N U A L V E R S I O N 1.0

these elements will be analyzed separately since every one of these parts represents an

integral part of the mikroSDK.

For a practical application example of the mikroSDK, you can skip directly to the
Practical usage of the mikroSDK in mikroE compilers.

NOTE

The mikroSDK standard defines specific layers, categorized by the physical domain
they are written for: MCU architecture specific code is placed in a separate layer,
development platform specific code is placed in its own separate layer, and finally - the
application software with the configuration parameters is also placed in a separate
layer. This modular approach allows the components to be switched, along with the
corresponding software layers.

SUMMARY

Page 6 m i k r o S D K M A N U A L V E R S I O N 1.0 V E R S I O N 1.0 m i k r o S D K M A N U A L Page 7

Introduction

Standardization of the Click library format covers the library implementation and code

organization; it also defines the rules to follow, to make the Driver mikroSDK standard

compliant. The standard allows the existing click library to be easily expanded with the

support for new architectures.

The Click library is composed of two layers: The Driver layer and the Hardware Abstraction

Layer, or shorter - the HAL.

The Hardware Abstraction Layer (HAL) is the lower-level layer with the common interface

on all supported architectures/compilers. This layer has no function accessible from the

user-space.

The Driver layer (Driver) is the reusable upper-level layer, which contains all the available

user functions. It also contains the additional content, such as the constants for the

register addresses and other constants available for the example code, which can be

used along with the available functions. Some of the content is not necessary but makes

implementation of the final application code much easier and much more comfortable.

C L I C K L I B R A R Y

Driver

DRIVER FUNCTIONS DRIVER INITIALIZATION

HAL

HAL FUNCTIONS

STM32 TIVA MSP432 CEC KINETIS

PIC PIC32 dsPIC FT90x AVR

HAL INITIALIZATION

Figure 3: Two main sections of the mikroSDK standard compliant click board™ library

Page 8 m i k r o S D K M A N U A L V E R S I O N 1.0

Figure 4: Hardware Abstraction Layer (HAL) and the supported peripherals

GPIO SPI I2C UART UART

ARCHITECTURE X

The mikroC HAL is composed of the source code files - one for each MCU architecture,

where one file covers all the peripherals currently supported by the standard (Figure 5).

Each supported peripheral has functions derived from the unique interface, which

makes the peripherals look identical on all the supported MCU architectures; the HAL

abstracts the peripheral functions. This property of the HAL simplifies the development

of the upper (Driver) layer and makes it independent of the used architecture.

HAL (Hardware Abstraction Layer)

The purpose of the Hardware Abstraction Layer (HAL) is to overcome the differences

between the used architectures, both in software and hardware terms. This is the layer

that allows for the library to be ported among other architectures/compilers.

Libraries, developed according to mikroSDK standard, can be used in other MikroElek-
tronika programming languages - mikroBasic and mikroPascal. Before the libraries can
be used, they have to be compiled for each architecture / MCU vendor, by using the
mikroC compiler and by generating MikroElektronika object files (.mcl and .emcl).

The click board libraries are provided as the software support for the click boards™. The
standardization of the click libraries allows for the click board application to run on
any supported hardware platform, without the need to rewrite the code itself. The click
library contains two layers – The HAL layer and the Driver layer.

SUMMARY

mikroSDK standard strictly prescribes that each library has a unique prefix, named

mostly related to the click board™ name, which ensures that there are no conflicting

global names from two different libraries. Prefix usage is mandatory for all globally

accessible identifiers.

Libraries that are provided for the MikroElektronika compilers are distributed as the

.mpkg packages, which contain object files, additional help documentation, and the

demonstration application examples. However, all the libraries will also be available in a

form of an open source for the mikroC compilers.

NOTE

Page 8 m i k r o S D K M A N U A L V E R S I O N 1.0 V E R S I O N 1.0 m i k r o S D K M A N U A L Page 9

GPIO

I2C

SPI

UART

GPIO

I2C

SPI

UART

GPIO

I2C

SPI

UART

GPIO

I2C

SPI

UART

GPIO

I2C

SPI

UART

GPIO

I2C

SPI

UART

GPIO

I2C

SPI

UART

ARM PIC dsPIC PIC32 AVR FT90X NEW ARCH.

Figure 5: Different architectures and their peripheral modules

Once written, HAL layer for any compiler can be re-used for any future projects.

Architecture selectors

Architecture and vendor selectors are provided automatically by the compiler command line.

COMPILER SELECTION

GPIO SPI I2C UART

PERIPHERAL SELECTION

ARM PIC dsPIC PIC32 AVR FT90x

Figure 6: HAL compiling selectors

Compiling of the HAL

The mikroC HAL is composed of modules written for different architectures. During the

compiling of the HAL for the specific architecture, the presence of other architecture

related content must not be allowed. Because of this, the mikroSDK standard prescribes

using of the HAL selectors. The HAL selectors are nothing more than preprocessors,

which do not allow compiling of parts of the HAL that are not related to the architecture

or peripheral used by the Driver layer.

#define __MIKROC_PRO_FOR_ARM__
#define __MIKROC_PRO_FOR_AVR__
#define __MIKROC_PRO_FOR_PIC__
#define __MIKROC_PRO_FOR_DSPIC__
#define __MIKROC_PRO_FOR_PIC32__
#define __MIKROC_PRO_FOR_FT90x__

The HAL is used to abstract the peripherals functions so that the functions look the
same on all the supported MCU architectures. This property of the HAL greatly simplifies
the Driver development. Once written, the HAL can be re-used for any future projects.

SUMMARY

NOTE

Page 10 m i k r o S D K M A N U A L V E R S I O N 1.0

HAL implementation

HAL is implemented so that it exposes the identical interface for any architecture and is

composed of identical function calls, internally linked by the Driver layer. Implementation

for each supported architecture is placed inside the separate source file.

Implementation must follow the Coding rules (Chapter 5)

HAL types

Each part of the HAL has its own structures, composed of function pointers used

internally for communication with the hardware. These structures are used only during

the initialization to assign proper values to the static function pointers.

Pointer prototypes depend on the architecture, except for the GPIO function pointer

types, which are identical for all the MCU architectures.

Since prototypes of peripheral functions differ from one compiler to another, HAL layer

takes care of bridging those differences. This property of HAL allows for easy porting of

the HAL to a newly supported architecture.

During the initialization, pointers to the toolchain specific functions are provided from

the higher layer and stored inside the HAL as static members. These pointers are

wrapped inside the HAL functions, allowing the upper layer to use the same function

calls on all MikroElektronika compilers, independently of the underlying architecture - as

long as it is supported by the MikroElektronika compilers.

When the HAL is compiled, only the content for the used peripheral and architecture
should be included, leaving out the code written for other architectures or peripherals.
That is why the standard defines HAL selectors, preprocessors which allow only relevant
content to be compiled.

SUMMARY

ARM vendor selectors

#define __STM32__
#define __TI__
#define __MSP__
#define __MCHP__
#define __KINETIS__

Peripheral selectors

Peripheral selectors are defined at the top of the library and used through the whole source file.

#define __CLICK_GPIO
#define __CLICK_SPI
#define __CLICK_I2C
#define __CLICK_UART

NOTE

Page 10 m i k r o S D K M A N U A L V E R S I O N 1.0 V E R S I O N 1.0 m i k r o S D K M A N U A L Page 11

GPIO types

GPIO function pointer types are identical across all the mikroC compilers for different

platforms. GPIO structure contains function pointers for each GPIO pin found on the

mikroBUS™, starting from the AN pin (Index 0), up to SDA pin (Index 11).

SPI types

Read and write functions are mostly the same on all mikroC compilers. The only

differences are related to the argument and return value types. While SPI read function

pointer alone is sufficient for the SPI communication in both directions, both SPI read and

write pointers are defined inside the SPI structure, for sustained backward compatibility.

typedef void (*T_click_gpio_Set)(uint8_t);
typedef uint8_t (*T_click_gpio_Get)();
typedef struct
{
 T_click_gpio_Set gpioSet[12];
 T_click_gpio_Get gpioGet[12];

}T_click_gpioObj;

typedef struct
{
 T_click_spi_Write spiWrite;
 T_click_spi_Read spiRead;

}T_click_spiObj;

I2C types

Implementation of the I2C libraries varies the most across the different mikroC

compilers. Not every mikroC compiler has all the function pointer types located inside

the I2C structure.

typedef struct
{
 T_click_i2c_Start i2cStart;
 T_click_i2c_Stop i2cStop;
 T_click_i2c_Restart i2cRestart;
 T_click_i2c_Write i2cWrite;
 T_click_i2c_Read i2cRead;

}T_click_i2cObj;

UART types

Similar to the SPI peripheral, differences between UART function pointer types are

mostly related to the arguments and return value types.

Page 12 m i k r o S D K M A N U A L V E R S I O N 1.0

#define T_HAL_P const uint8_t*

Each HAL public function expects a pointer to the appropriate structure, cast to the HAL

abstract type. These structures contain function pointers for that specific peripheral

and those pointers will be assigned to the private function pointer members, inside the

HAL.

Initialization function for the HAL subsection of each peripheral must be called first,

before using any other Driver function that uses functions from that HAL subsection.

The provided argument will be dereferenced to the appropriate HAL Types.

Initialization of the GPIO HAL

Parameters:

void hal_gpioMap(T_HAL_P gpioObj);

GPIO map

gpioObj pointer to the GPIO structure which carries proper
pointers

HAL initialization functions

All the HAL Init functions are static and internally linked by the Driver layer.

The initialization within the Driver layer connects the HAL functions and proper peripheral

function calls (such as writing and reading functions for SPI, I2C, UART, etc.).

The Init functions for a certain peripheral are named by using the Map suffix and always

have the same prototype, independent of the used compiler. The function argument is

always abstract type, defined inside the Driver layer, using the same macro for all the

mikroC compilers:

The HAL uses its own structures to communicate with the hardware. Those structures
are only used during the initialization, to assign proper values to the static function
pointers.

SUMMARY

typedef struct
{
 T_click_uart_Write uartWrite;
 T_click_uart_Read uartRead;
 T_click_uart_Ready uartReady;

}T_click_uartObj;

Page 12 m i k r o S D K M A N U A L V E R S I O N 1.0 V E R S I O N 1.0 m i k r o S D K M A N U A L Page 13

Initialization of the UART HAL

Parameters:

Initialization of the I2C HAL

Parameters:

Initialization of the SPI HAL

Parameters:

void hal_uartMap(T_HAL_P uartObj);

void hal_i2cMap(T_HAL_P i2cObj);

void hal_spiMap(T_HAL_P spiObj);

UART map

I2C map

SPI map

uartObj

i2cObj

spiObj

pointer to the UART structure which carries proper
pointers

pointer to the I2C structure which carries
proper pointers

pointer to the UART structure which carries proper
pointers

HAL initialization does not execute peripheral initialization. Peripheral initialization must
be executed explicitly inside the user application or by the mikroBUS API.

HAL functions

All HAL functions are internally linked by the Driver layer and have the same prototype

on all compilers.

Each peripheral section has its own set of functions so that the set of functions can be

observed as a separate module. Implementation of these peripheral related functions is

the key to successful porting of the HAL.

The HAL Init functions are called from within the Driver layer and are used to map the
HAL function pointers to the peripheral function calls. The HAL initialization has to be
done before any other HAL functions of that subsection are accessed from the Driver
layer. Since the HAL Init function only maps the appropriate pointers, no peripheral
initialization is going to be executed by this function.

SUMMARY

NOTE

Page 14 m i k r o S D K M A N U A L V E R S I O N 1.0

Commenting out the unneeded pin definitions will remove the specific pin function

pointers from the HAL. Using this method will allow having only the necessary pointers

in the code, saving the RAM memory that way and optimizing the HAL.

SPI

SPI functions are wrappers for the function pointers provided during initialization, with

the addition of sequence read and write, because of the sequence execution speed

improvements.

#define __AN_PIN_INPUT__
#define __RST_PIN_INPUT__
#define __CS_PIN_INPUT__
#define __SCK_PIN_INPUT__
#define __MISO_PIN_INPUT__
#define __MOSI_PIN_INPUT__
#define __PWM_PIN_INPUT__
#define __INT_PIN_INPUT__
#define __RX_PIN_INPUT__
#define __TX_PIN_INPUT__
#define __SCL_PIN_INPUT__
#define __SDA_PIN_INPUT__

#define __AN_PIN_OUTPUT__
#define __RST_PIN_OUTPUT__
#define __CS_PIN_OUTPUT__
#define __SCK_PIN_OUTPUT__
#define __MISO_PIN_OUTPUT__
#define __MOSI_PIN_OUTPUT__
#define __PWM_PIN_OUTPUT__
#define __INT_PIN_OUTPUT__
#define __RX_PIN_OUTPUT__
#define __TX_PIN_OUTPUT__
#define __SCL_PIN_OUTPUT__
#define __SDA_PIN_OUTPUT__

static void hal_spiWrite
(uint8_t *pBuf, uint16_t nBytes);

These functions must use only function pointers provided during the initialization. This

allows for a dynamic assignment and usage of the same library for different physical

modules, provided that the higher layers are properly written.

GPIO

HAL functions related to the GPIO are nothing more than function pointers named with

the hal_ prefix. Since the HAL compiling unit is internally linked with the Driver layer, the

Driver is able to call execution of these pointers, directly.

Compared to the other HAL modules, compiling of the GPIO module functions depends

on additional selectors, defined at the top of the HAL interface. Each GPIO pin has two

selectors: the first one is for the input direction and the second one for the output

direction.

Page 14 m i k r o S D K M A N U A L V E R S I O N 1.0 V E R S I O N 1.0 m i k r o S D K M A N U A L Page 15

in

out

in

pIn

pOut

nBytes

pointer to write data buffer

pointer to read data buffer

number of bytes for exchange

static int hal_i2cStart();

static int hal_i2cWrite
(uint8_t slaveAddr, uint8_t *pBuff, uint16_t nBytes, uint8_t endMode);

Function should execute RW sequence of n bytes

Parameters:

I2C

I2C static functions are modeled by the functions used for the STM32, found in the

mikroC PRO for ARM compiler. The main reason for this is to simplify the development of

the library. Code, written for the STM32 can be ported to the library by simply renaming

the compiler I2C functions to the HAL equivalent ones.

This function in the snippet above should execute start condition on the I2C BUS.

This function in the snippet above should execute write sequence, write the data inside

the pBuf and execute “end” or “restart” condition, depending on the endMode argument.

Parameters:

Function should execute write sequence of n bytes.

Parameters:

out

in

pBuf

nBytes

pointer to data buffer

number of bytes for writing

static void hal_spiRead
(uint8_t *pBuf, uint16_t nBytes);

out

in

pBuf

nBytes

pointer to data buffer

number of bytes for reading

Function should execute read sequence of n bytes.

Parameters:

static void hal_spiTransfer
(uint8_t *pIn, uint8_t *pOut, uint16_t nBytes);

Page 16 m i k r o S D K M A N U A L V E R S I O N 1.0

in

in

in

in

slaveAddress

pBuf

nBytes

endMode

7 bit slave addres without 0 bit (read/write
bit)

pointer to data buffer

number of bytes for writing

END_MODE_STOP / END_MODE_RESTART

static int hal_i2cRead
(uint8_t slaveAddr, uint8_t *pBuff, uint16_t nBytes, uint8_t endMode);

in

out

in

in

slaveAddress

pBuf

nBytes

endMode

7 bit slave addres without 0 bit
(read/write bit)

pointer to data buffer

number of bytes to read

END_MODE_STOP / END_MODE_RESTART

This function in the snippet above should execute read sequence, and place the data

inside the pBuf and execute “end” or “restart” condition, depending on the endMode

argument.

Parameters:

static void hal_uartWrite(uint8_t input);
static uint8_t hal_uartRead();
static uint8_t hal_uartReady();

UART

UART static functions are wrappers for the familiar read, write and ready functions, with

common usage on all compilers.

Driver layer

The Driver layer contains the main implementation of the click board™ functionality. This

layer must be written in pure ANSI C89 without using of any mikroC specific functions,

macros or any of mikroC libraries, as for example - the conversion functions, because

this layer must be able to compile in any ANSI C compliant compiler.

The HAL functions have the same prototype on all compilers, which is the ultimate goal
of the HAL layer. This makes the upper layer able to use the same functions for the
specific peripheral module.

SUMMARY

Page 16 m i k r o S D K M A N U A L V E R S I O N 1.0 V E R S I O N 1.0 m i k r o S D K M A N U A L Page 17

Driver implementation

Implementation must follow the Coding rules (Chapter 5).

The standard prescribes the content of driver files very strictly. The Driver files content

can be divided into sections, as shown in the Figure 7.

Header Source
PUBLIC CONSTANTS DECLARATION PUBLIC CONSTANTS DEFINITION

PUBLIC TYPES DEFINITION PRIVATE FUNCTIONS DEFINITION

PUBLIC FUNCTIONS DECLARATION PUBLIC FUNCTIONS DEFINITION

Figure 7: Structure of the driver layer

Driver initialization

Driver initialization functions are the most direct interaction between the user space

and the HAL because the Driver initialization functions are mostly wrappers for the HAL

initialization functions.

Driver initialization functions are the only common functions for all the Drivers which

use the same peripheral.

The initialization function arguments are common abstract types, which expect a pointer

to structures, with the proper toolchain function pointers as their structure members.

These pointers are forwarded directly to the HAL initializations and stored inside the

HAL.

Abstract type used for all initialization functions, is defined by using a macro and contains

prefix name to avoid any collision with the same type, defined inside some other library:

#define T_CLICK_P const uint8_t*

This allows for the extension of the HAL layer at a later time and using the Driver with

other compilers. Driver access to hardware is allowed only through the HAL functions

calls.

Page 18 m i k r o S D K M A N U A L V E R S I O N 1.0

void CLICK_spiDriverInit
(T_CLICK_P gpioObj, T_CLICK_P spiObj);

void CLICK_i2cDriverInit
(T_CLICK_P gpioObj, T_CLICK_P i2cObj, uint8_t slaveAddr);
void CLICK_uartDriverInit
(T_CLICK_P gpioObj, T_CLICK_P uartObj)

void CLICK_gpioDriverInit
(T_CLICK_P gpioObj);

Driver constants

Driver constant variables should be declared as external constants inside the header

and defined inside the C file. Those variables are mostly related to the values such as

register addresses or some specific settings, or even function return values.

By using constants, it is ensured that the library can be used either as an object file or

as a source code. This is important when usage of the same object files for mikroPascal

and mikroBasic is required.

H file

C file

extern const uint8_t _CLICK_SOME_VAR;
extern const uint8_t _CLICK_SOME_ARR[];

const uint8_t _CLICK_SOME_VAR = 15;
const uint8_t _CLICK_SOME_ARR[3] = { 10, 20 ,30 };

Each Driver initialization function has a pointer to the GPIO structure as the first argument.

The second argument is the pointer to the HAL structure, which contains function

pointers for the toolchain specific peripheral functions. Also, additional arguments are

allowed like in the case of the I2C Driver, where providing the slave address is mandatory

for the Driver.

Driver initialization functions can be observed in the following code snippet:

The Driver layer is directly interfaced with the HAL layer. The Driver initialization
functions are actually wrappers of the HAL initializations. The first argument of the
Driver Init functions is always a pointer to the GPIO structure, followed by the argument
that is the pointer to the HAL structure which contains function pointers for the
toolchain specific peripheral functions (such as the SPI, I2C…). The Driver layer has to
be ANSI C89 compliant so that the portability can be retained.

SUMMARY

Page 18 m i k r o S D K M A N U A L V E R S I O N 1.0 V E R S I O N 1.0 m i k r o S D K M A N U A L Page 19

Generating of the Help can be illustrated graphically, like in the table above (Figure 8).

Generating HTML by using Doxygen is essentially a transition process. This process is

used for customization of the final documentation, by using the .css files, provided by

MikroElektronika.

Generating the .chm file is a conversion of the generated HTML documentation to .chm

format (Windows OS help format) with no additional operation or text formatting needed.

For generating the documentation, a template is already provided. It must be used to

generate documentation for each click board™. This way, provided documentation will

be uniformly formatted – it will have the same style and format for all the click boards™.

More details about the documentation rules can be found in the documentation rules

section.

Library documentation

Documentation for the each part of the mikroSDK is provided in a form of .chm - windows

help files, placed inside the .mpkg package.

SOURCE FILES

QCHPDF CHM

TEX HTML

Figure 8: Schematic diagram of Help file generation process

The mikroSDK standard also defines the structure of the documentation. The software
used for the documentation generation is the Doxygen, a widely accepted software
tool which generates uniform and clean technical documentation for the developed
software.

SUMMARY

Page 20 m i k r o S D K M A N U A L V E R S I O N 1.0

While HAL simplifies and makes library identical for all MCU architectures/vendors,

The mikroBUS API simplifies and makes the provided demo applications and user

m i k r o B U S A P I

Introduction

The mikroBUS API is a distinct layer between the user application and the click Driver,

which represents an abstraction of all supported development systems, focused on

systems equipped with the mikroBUS™ sockets.

The main advantage of using the mikroBUS API is that it overcomes dissimilarities

between the different development systems, allowing the developer to use exactly

the same code for applications on all the supported architectures. The mikroBUS API

consists of board definition files, one for each supported development system. Board

definition files contain definitions for each mikroBUS™ present on the specific system,

as well as some additional modules, or even single helper functions.

Board definition file

ARCHITECTURE SPECIFIC TYPES

GPIO SPI I2C UART ...

SYSTEM SPECIFIC CONSTANTS AND STRUCTURES

GPIO SPI I2C UART ...

COMMON FUNCTIONS

GPIO SPI I2C UART ...

COMMON HELPERS

LOGGER ...

Figure 9: Board definition file structure

Page 20 m i k r o S D K M A N U A L V E R S I O N 1.0 V E R S I O N 1.0 m i k r o S D K M A N U A L Page 21

mikroBUS API compiling

Compiling of the mikroBUS API content mostly depends on the content of the PLD file

and the selected board in the Library Manager. PLD files are composed of selectors used

to decide which part of the board definition files are going to be compiled, conserving

the memory footprint of the code that way. PLD file can be replaced with a simple header,

included in every interface and module inside the mikroBUS API.

If this standard is followed during the implementation of every sublayer, example
provided will be the same for all platforms supported by mikroSDK.

SPI

EasyMX STM

UART

I2C

LOG

SPI

mikromedia 5 TIVA

UART

I2C

LOG

SPI

Hexi Docking

UART

I2C

LOG

SPI

clicker 2 CEC1302

UART

I2C

LOG

SPI

...

UART

I2C

LOG

SPI

EasyPIC

UART

I2C

LOG

SPI

EasyPIC PRO

UART

I2C

LOG

SPI

PIC clicker

UART

I2C

LOG

SPI

mikromedia PIC18FJ

UART

I2C

LOG

SPI

...

UART

I2C

LOG

SPI

EasyPIC FUSION

UART

I2C

LOG

SPI

clicker 2 PIC32MX

UART

I2C

LOG

SPI

clicker 2 PIC32MZ

UART

I2C

LOG

SPI

mikromedia PIC32

UART

I2C

LOG

SPI

...

UART

I2C

LOG

ARM

PIC

PIC32

Architecture selection Library manager selection PLD file selection

Figure 10: mikroSDK compiling selectors

The mikroBUS API represents an abstraction layer for the actual hardware that runs
the application. The mikroBUS API consists of board definition files which contain
definitions for each mikroBUS™ present on the specific system. The mikroBUS API
makes the application code seems identical for all the supported hardware platforms,
regardless of the physical differences among them. Extension of the mikroBUS API
is possible in 3 directions: by adding the board definition files to support additional
systems, by adding new supported peripherals, or by adding various helper functions
or modules.

SUMMARY

applications seem identical on all the supported hardware platforms, allowing them to

use the same simple API calls for any development system. These API calls are mostly

related to Driver initialization, except for some additional functions.

Board definition files are implemented using the identical interface that is placed at the

top level, while modules divided by the peripherals currently supported by the mikroSDK

are located in a level below this interface.

NOTE

Page 22 m i k r o S D K M A N U A L V E R S I O N 1.0

Similarly, like the sections of the HAL layer, mikroBUS API board definition files can also

be divided into four main sections: GPIO, SPI, I2C, and UART. Compiling of each section

depends on the content of the PLD file, except for the GPIO part - which is always

compiled.

Depending on the MikroElektronika Library Manager board selection, only one board

definition file will be compiled. Peripheral selection in PLD file is used to determine which

modules and interfaces of the selected board definition file will be compiled (SPI, I2C,

UART). This can optimize the memory usage. Figure 10 illustrates all the factors which

decide which part of the mikroBUS API will be compiled.

ENABLE_SPI
ENABLE_I2C
ENABLE_UART

ENABLE_LOG

Peripheral selectors

Helper selector

mikroBUS API is also subject to selective compiling, just like the HAL. The selectors
for the mikroBUS API sections come in a form of PLD file directives and the Library
Manager board selection. Leaving out parts of the mikroBUS API that are not needed
results with the smaller application footprint.

SUMMARY

mikroBUS API implementation
mikroBUS API modules

Each mikroBUS API module is composed of structures and additional functions which

are used for peripheral initialization.

mikroBUS API must be provided in a form of an open source code. Source code is placed

inside the .mpkg package, for each program language and MCU architecture.

Structure definitions are identical to structures defined inside the HAL and the members

(function pointers) prototypes depend on the used architecture. Functions which

perform peripheral initialization, always have the same prototype and a single argument,

which contains parameters for peripheral configuration.

Page 22 m i k r o S D K M A N U A L V E R S I O N 1.0 V E R S I O N 1.0 m i k r o S D K M A N U A L Page 23

GPIO module

GPIO module contains GPIO functions for setting and getting the state of each individual

pin of the mikroBUS™ slots. These functions are stored inside the structures which are

passed to the HAL layer during the Driver initialization. Board def also contains GPIO set

direction functions for each individual pin, so it can be set as either input or output at

any time.

Peripherals modules

There are multiple sets of SPI, UART and I2C functions defined for each system in the

compiler libraries. Board definition files take care of selecting the correct functions for

the desired mikroBUS™ of the chosen development system. Pointers to those functions

are stored inside the mikroBUS API structures and will be passed to the HAL layer during

the Driver Init function call.

Board definition files also contain initialization functions for each peripheral.

Logger module

The logger uses built-in UART functions to send data from the user application to the

selected UART output. It is configured and initialized using the provided function, from

inside the user application. Logger is not limited to sending data via the mikroBUS™

UART pins only. It can also send data via USB UART ports, on development systems

where those are included.

Logger is the only part of the mikroSDK that has no connection to the Driver.

mikroBUS API Types

From the developer’s point of view, the most important mikroBUS API types are structures

used for the library initialization.

Every board def must have at least one public variable of the appropriate type per each

mikroBUS™. These variables contain pointers to MikroElektronika library functions,

related to the specific mikroBUS™ and peripheral module. These variables are provided

to library Driver initialization function.

Page 24 m i k r o S D K M A N U A L V E R S I O N 1.0

GPIO types

Structure identical to T_hal_gpioObj .
typedef struct
{
 T_gpio_set gpioSet[12];
 T_gpio_get gpioGet[12];

}T_gpio_obj;

There are 12 set members and 12 get members according to the amount of available
GPIO pins on the mikroBUS.

typedef struct
{
 T_spi_write spiWrite;
 T_spi_read spiRead;

}T_spi_obj;

SPI types

Structure identical to T_hal_spioObj .

typedef struct
{
 T_i2c_start i2cStart;
 T_i2c_stop i2cStop;
 T_i2c_restart i2cRestart;
 T_i2c_write i2cWrite;
 T_i2c_read i2cRead;

}T_i2c_obj;

typedef struct
{
 T_uart_write uartWrite;
 T_uart_read uartRead;
 T_uart_ready uartReady;

}T_uart_obj;

I2C Types

Structure identical to T_hal_i2cObj .

UART types

Structure identical to T_hal_uartObj .

mikroBUS API public functions

Each board def module has at least one public function per peripheral, used for peripheral

initialization. All of the functions contain the mikroBUS™ slot as the first argument. The

rest of the arguments are used to configure other peripheral specific parameters.

NOTE

Page 24 m i k r o S D K M A N U A L V E R S I O N 1.0 V E R S I O N 1.0 m i k r o S D K M A N U A L Page 25

T_mikrobus_ret ret = 0;

ret |= mikrobus_gpioInit(_MIKROBUS1, _MIKROBUS_INT_PIN, _GPIO_INPUT);
ret |= mikrobus_gpioInit(_MIKROBUS2, _MIKROBUS_CS_PIN, _GPIO_OUTPUT);

if (0 == ret)
{
 // SUCCESS
}
else
{
 // ERROR
}

Returns:
_MIKROBUS_OK / _MIKROBUS_ERR_BUS / _MIKROBUS_ERR_PIN

Parameters:

in

in

in

bus

pin

direction

mikroBUS™ number

mikroBUS™ pin

GPIO direction

T_mikrobus_ret mikrobus_spiInit
(T_mikrobus_bus bus, const uint32_t *cfg);

This example demonstrates a proper way for GPIO direction setup. INT pin on mikroBUS™

1 is configured as input and CS pin on the second mikroBUS™ is configured as an output.

SPI functions

The function will initialize SPI peripheral on the mikroBUS™ provided as the first

argument, with the configuration provided as the second argument. Default peripheral

configuration is provided along with the click board™ library.

T_mikrobus_ret mikrobus_gpioInit
(T_mikrobus_soc bus, T_mikrobus_pin pin, T_gpio_dir direction);

GPIO Functions

The function in the code snippet above configures the GPIO pin, according to the provided

parameters. This function must be called once per each GPIO used by the Driver.

Parameters:

in

in

bus

cfg

bus number

pointer to the I2C configuration

Page 26 m i k r o S D K M A N U A L V E R S I O N 1.0

T_mikrobus_ret log_init
(T_log_port port, const uint32_t baud);

T_mikrobus_ret log_write
(uint8_t* data, T_LOG_format format);

LOG functions

LOG module compared to other modules have two public functions. One is for the

initialization and the other one is for the data logging.

The function in the snippet above will initialize UART peripheral on the mikroBUS™

provided as the first argument, with the configuration provided as the second argument.

Default peripheral configuration is provided alongside with the click board™ library.

Parameters:

LOG module requires initialization before using its log write function. Init function

will initialize proper UART module, depending on the first argument and selected

development system with baud rate provided as the second argument, with 8 data bits,

no parity and one stop bit (8N1).

Returns:
MIKROBUS_OK / MIKROBUS_ERR_BUS / MIKROBUS_ERR_UART

in

in

bus

cfg

bus number

pointer to the UART configuration

T_mikrobus_ret mikrobus_uartInit
(T_mikrobus_bus bus, const uint32_t *cfg);

UART functions

Returns:
MIKROBUS_OK / MIKROBUS_ERR_BUS / MIKROBUS_ERR_I2C

The mikroBUS API layer consists of structure definitions, identical to the structures
defined in the HAL. The board definition files are used to select the specific peripheral,
routed to the desired mikroBUS™. Pointers to those peripheral functions are stored
inside the mikroBUS API structures and are passed to the HAL layer during the Driver
Init function calls. The mikroBUS API public functions are used to initialize the actual
hardware platform that is used to run the application.

SUMMARY

Page 26 m i k r o S D K M A N U A L V E R S I O N 1.0 V E R S I O N 1.0 m i k r o S D K M A N U A L Page 27

Introduction

Demo application source code, as the most exposed part of this standard, should be

simple and well organized. Provided demo applications will be usable in the “out of box”

manner for the default MikroElektronika development systems.

Example contains following files:

 1. Source file .c, .mpas, .mbas

 2. Project file .mcp, .mpp, .mbp

 3. Project configuration file .cfg

 4. Default peripherals configuration for the particular click board™ provided in

 file .h, .mpas, .mbas

 5. Additional necessary types .h, .mpas, .mbas

 6. PLD File .pld

Source file

The source file contains the source code of the demo application. It includes the demo

application description and details contained in the comments and implementation of

the example.

Project file

The project file contains the project settings for the MikroElektronika compiler projects.

It is generated automatically, and should generally be left unchanged.

Project configuration file

Project configuration contains the configuration bits settings for the selected MCU. It is

changed by loading schemes in the Edit Project window of MikroElektronika compilers.

Peripherals configuration file

This header file contains constants used for the initialization of the specific peripheral.

D e m o a p p l i c a t i o n c o d e

Page 28 m i k r o S D K M A N U A L V E R S I O N 1.0

These constants represent the default peripheral initialization parameters for a specific

click board™, which is provided to the mikroSDK initialization function, for the specific

module.

Additional types

This header file contains necessary types, such as T_CLICK_P abstract type used for

casting during Driver initialization calls.

PLD file

PLD file contains peripheral selectors, generated automatically by the automatization

application, or placed inside manually, by the end-user.

Demo application code implementation

Usage of the mikroBUS API LOG helper functions is preferred.

Each demo application code should be composed of three basic functions whenever it

is possible:

 1. systemInit

 2. applicationInit

 3. applicationTask

systemInit is the place for mikroBUS API initialization function calls.

applicationInit function is the right place for the driver initialization function and

other necessary calls, related to the library initialization and calls needed to be done

before using the driver functionalities.

applicationTask function will be placed inside an infinite loop, and it carries a

simple demonstration of the driver functions usage.

const uint32_t _CLICK_SPI_CFG[3] =
{
 1000000,
 _SPI_MSB_FIRST,
 _SPI_CLK_IDLE_LOW |
 _SPI_SAMPLE_DATA_RISING_EDGE
};

Content of these constants depends on compiler/architecture and vendor.

Page 28 m i k r o S D K M A N U A L V E R S I O N 1.0 V E R S I O N 1.0 m i k r o S D K M A N U A L Page 29

Application example

The pseudo-example below demonstrates how to use the mikroSDK in practice.

Provided example could be used on any architecture/mikroC compiler, because all the

code related to some specific MCU architecture is now placed inside the mikroSDK. This

simple example uses SPI, GPIO, and LOG.

PLD file content

mikroC example code

ENABLE_SPI
ENABLE_LOG

// Not needed in case of using of MikroElektronika packages
#include “__click_driver.h”

// Default config provided with click board for each arch
#include “Click_config.h”

#include “Click_types.h”

// COMMON TYPES - default types
void systemInit()
{
 mikrobus_gpioInit(_MIKROBUS1, _MIKROBUS_CS_PIN, _GPIO_OUTPUT);
 mikrobus_spiInit(_MIKROBUS1, _CLICK_CFG);
 mikrobus_logInit(_MIKROBUS2, 9600);
 Delay_ms(100);
}

void applicationInit()
{
 click_driverInit((T_CLICK_P)&_MIKROBUS1_GPIO, (T_CLICK_P)&_MIKROBUS1_SPI);
 mikrobus_logWrite(“Initialized”, _LOG_LINE);
}

void applicationTask()
{
 char readValue;
 char testTxt[25];

 click_writeRegister(_CLICK_REG, 0xD0);
 readValue = click_readRead(_CLICK_REG);

 ByteToStr(readValue, testTxt); // Conversion
 mikrobus_logWrite(“Value : “, _LOG_TEXT); // Writing text to UART
 mikrobus_logWrite(testTxt, _LOG_LINE); // Writing register content
 Delay_ms(1000);
}
void main()
{
 systemInit();
 applicationInit();
 while (1)
 {
 applicationTask();
 }
}

Page 30 m i k r o S D K M A N U A L V E R S I O N 1.0

#include “__click_driver.h”

void csControl(uint8_t state)
{
 GPIOD_ODR.B13 = state;
}

// Structure which holds pointer to function which set the state of
CS pin
const T_hal_gpioObj myGpioMap =
{
 { 0, 0, csControl, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
};

// Structure which holds pointers to MikroElektronika SPI library
functions // // used on desired bus
const T_hal_spiObj mySpiMap =
{
 SPI3_Write,
 SPI3_Read
};

void systemInit()
{
 GPIO_Digital_Output(&GPIOD_ODR, _GPIO_PINMASK_13);
 SPI3_Init_Advanced(_SPI_FPCLK_DIV256, _SPI_MASTER | _SPI_8_BIT
|
 _SPI_CLK_IDLE_HIGH | _SPI_SECOND_CLK_EDGE_
TRANSITION |
 _SPI_MSB_FIRST | _SPI_SS_DISABLE | _SPI_SSM_
ENABLE |
 _SPI_SSI_1, &_GPIO_MODULE_SPI3_PC10_11_12);
 UART1_Init(9600);
 Delay_ms(100);
}
void applicationInit()
{
 click_driverInit((const uint8_t*)myGpioMap, (const uint8_t*)
mySpiMap);
 UART1_Write_Text(“Initialized\r\n”);
}

void applicationTask()
{
 char readValue;
 char testTxt[25];

 click_writeRegister(_CLICK_REG, 0xD0);
 readValue = click_readRegister(_CLICK_REG);
 ByteToStr(readValue, testTxt);
 UART1_Write_Text(“Value: “);
 UART1_Write_Text(testTxt);
 UART1_Write_Text(“\r\n”);
 Delay_ms(1000);
}

void main()
{
 systemInit();
 applicationInit();

 while (1)
 applicationTask();
}

It is also possible to avoid any use of the mikroSDK. In that case, it is up to end user to

send the correct function pointers to the HAL layer. Peripheral functions are already

available in MikroElektronika compilers, but the GPIO set/get functions need to be

implemented manually.

Page 30 m i k r o S D K M A N U A L V E R S I O N 1.0 V E R S I O N 1.0 m i k r o S D K M A N U A L Page 31

These two examples above can be used to achieve the same thing. The main difference

is that the first code where the mikroSDK is used is smaller and way easier to read. It is

not dependent on the underlying architecture. The second code is made to run strictly

on the EasyMX for STM32 board and the specific MCU, since all the GPIOs and compiler

built-in functions are specifically initialized in the code.

The mikroSDK Standard clearly defines the existence of the demo application, which
demonstrates the basic functionality of the target device for which the application is
developed, in an out-of-the-box manner. The demo application has to follow the rules
defined by the mikroSDK standard and as such, it can be used as a starting point or a
reference for the future design of the user’s application.

SUMMARY

Page 32 m i k r o S D K M A N U A L V E R S I O N 1.0

Introduction

Unlike some architecture, dependent parts of the mikroSDK, like the board definition

files and the HAL, which are developed for some specific compiler, the Driver layer is the

only one which must be able to compile, regardless of the used compiler. Because of

that, most of the coding rules are related to the Driver layer.

Files and folders organization

This set of rules also covers folder and files organization and documentation provided

with the click board™.

C o d i n g r u l e s

Click Folder

doc

example

library

packages

Click library file names always start with the “__” double underscore character. All

content related to the click library is placed inside the library folder. While HAL interface

itself is placed inside the library, all the things related to some specific architecture and

compiler are placed inside the HAL subfolder. Each of these file names starts with the

“__HAL_” prefix, followed by the indexed compiler or architecture name, or both of them

combined.

Library

HAL

__HAL.PIC.c

__click_driver.c

__click_driver.h

__click_hal.h

...

Page 32 m i k r o S D K M A N U A L V E R S I O N 1.0 V E R S I O N 1.0 m i k r o S D K M A N U A L Page 33

Demo applications, composed of the source files - in addition to the project files, are

placed inside the “example” folder, organized by subfolders, named with the same

suffixes as used for the HAL. Only ARM folder has additional subfolders.

example

PIC Project files

source

Configuration

dsPIC Project files

source

Configuration

ARM

STM32 Project files

source

Configuration

KINETIS Project files

source

Configuration

Packages for the MikroElektronika compilers are placed inside the package folder,

organized by subfolders, named by the programming language. Package files suffix

consists of indexed compiler name - similar to HAL, but in this case, there is only one

package for the ARM compilers, which contains packages for all the supported vendors.

Documentation is placed inside the doc folder and besides the doxyfile (useful for

generation of the HTML help documentation), there is Windows OS help format file,

which is built using the additional .css file - with customized header and footer. Windows

help file is always named “helpfile.chm”

Page 34 m i k r o S D K M A N U A L V E R S I O N 1.0

packages

C

basic

ARM

PIC

ARM

PIC

doc

doxy

img

...

schematic.pdf

Doxyfiledoxy

CSS

tex

Page 34 m i k r o S D K M A N U A L V E R S I O N 1.0 V E R S I O N 1.0 m i k r o S D K M A N U A L Page 35

Source coding rules

Rules are divided by meaning and not all of these rules must be strictly followed. The

most important are the implementation rules, while syntax and naming rules are not

crucial - but there are few of them which must be followed, in order to have the library

usable on more compilers.

Key rules

 1. All library global accessible identifiers must start with the unique prefix
 2. Library must be written in pure ANSI C89, without the usage of any
 compiler specific function
 3. Delay functions are the only functions which are allowed, but only the
 predefined ones - with no argument
 4. All publicly visible types must be a type of <stdint.h> library or at least
 typedef derived by some of stdint.h types
 5. Use unsigned types whenever possible

Other rules

 Functions

 1. Global function identifier must start with a unique library prefix
 2. Private function identifier should not have library prefix
 3. Function identifier should contain at least one additional word separated
 with the character “ _” - verb which comes right after the prefix
 4. Exception to this rule are initialization functions, which are special
 kind of functions
 5. Usage of “_” character inside argument identifier is forbidden
 6. Argument should be a noun - one word if possible
 7. Counter argument identifier should start with the n prefix
 8. Pointer argument identifier should start with the p prefix
 9. Function pointer argument identifier should start with the fp prefix
 10. Braces come right after the function identifier, without any spaces
 in between
 11. Use spaces between argument indenters but also between identifiers
 and braces

uint8_t click_gpioDriverInit(T_CLICK_P gpioObj);
uint8_t click_setHandler(T_click_handler *fpHdl);

uint8_t function(uint8_t key, uint8_t key2)
{
 uint8_t result;
 result = key + key2;
 return result;
}

Page 36 m i k r o S D K M A N U A L V E R S I O N 1.0

Explanation: ANSI C89 standard requires declaration of variables at the begging of the block,

so if the code needs to be compatible with such compilers, those rules have to be followed.

Explanation: function naming rule allows having easily recognizable function names.

Function argument naming rule, in addition to variable naming rule, allows for having

a prediction of what exactly the argument is - and to avoid naming collision between

arguments and variables.

void click_readRegister(uint8_t *pData, uint8_t nBytes)
{
 while (nBytes--)
 {
 readData(*(pData++));
 }
}

 Variables

 12. Prefix is mandatory inside variable identifier for all global accessible
 variables and defines
 13. All global accessible variable identifiers have “_” character as prefix
 14. Constant variable is written using only capital letters
 15. Variable identifier should be a noun, which can be extended using an
 adjective as prefix
 16. Extern variables must have library prefix, but usage of “_” character prefix
 is forbidden
 17. Each variable which is candidate for function argument must be a constant
 18. Variables such counters, flags and pointers, should have appropriate
 prefix, same as in the case of function arguments, but separated with the
 “_” character, from the noun.
 19. Every declared static variable should be set to initial value during
 module initialization call
 20. Every local variable must be declared at the beginning of the block

const uint16_t _CLICK_DEFAULT_STATUS = 0x15;

uint8_t slaveAddress;
bool f_busy;
T_click_hanlder *fp_defaultHandler;

void function(uint8_t input)
{
 uint16_t n_tick = 0;

 slaveAddress = 0x15;
 f_busy = false;

 while (n_tick++ < input)
 {
 if (gpio_pin())
 {
 f_busy = true;
 }
 }
}

Page 36 m i k r o S D K M A N U A L V E R S I O N 1.0 V E R S I O N 1.0 m i k r o S D K M A N U A L Page 37

typedef struct
{
 uint8_t sid;
 uint8_t eid[2];
 uint8_t remoteRequest;
 uint8_t senderAddress;
 uint8_t payload[64];

}T_MCP25625_message;

typedef enum
{
 MCP25625_POS_LEFT,
 MCP25625_POS_RIGHT,
 MCP25625_POS_UP,
 MCP25625_POS_DOWN

}T_MCP25625_position;

Explanation: all defined types cannot be provided through the .mcl or .emcl compiler

object files, so whenever enum is needed, it is better to define constant, which will be

named according to constant variable naming rule, rather than a member of enum.

 Conditional statements

 32. Conditional statement key word should be separated with space from

 Macros & defines

 21. Each macro or define is named using only capital letters
 22. Macros and defines placed inside the source file, should not have
 library prefix
 23. Defines necessary for the higher layer, must be named with the
 starting library prefix
 24. Usage of defines as arguments for functions is not allowed

Explanation: macros and defines are pre-processors, so they cannot be provided

through the compiler object files. mikroPascal and mikroBasic compilers use object files

generated by the mikroC compiler, so the macros and defines won’t be accessible by

those compilers.

 Structures and enums

 25. Usage of global accessible types, should be avoided whenever possible
 26. Exception to previous is type derived from stdint.h library types
 27. Usage of “T_” prefix is mandatory for structure and enum type identifiers
 28. Each global accessible type must have library prefix after “T_” prefix
 and before additional content
 29. Structure and enum field identifier should be a noun in addition
 of an adjective, whenever needed
 30. Structure member naming should be same as the variable naming rule.
 31. Enum members naming should follow macros and defines rules.

Page 38 m i k r o S D K M A N U A L V E R S I O N 1.0

/** @file my_file.h */

/** @defgroup CL_REGS Registers */
/** @{ */

const uint16_t CLICK_REG_1 = 0; /**< Register 1 */
const uint16_t CLICK_REG_2 = 1; /**< Register 2 */

/** @} */

/** @struct T_click_colors
 * @brief Colors
 */

 braces related to condition
 33. Continue statements are forbidden
 34. Break statement should be avoided whenever possible
 35. Instead of switch statement, if and else should be used
 36. Goto is forbidden
 37. Same as for functions, block braces comes to the next line
 38. Single line block without braces is forbidden

uint8_t function(uint8_t key, uint8_t key2)
{
 uint8_t result;
 if (key > key2)
 {
 result = key;
 }
 else
 {
 result = key2;
 }
 return result;
}

Explanation: ANSI C89 allows usage of constants as case labels, while according to C99

that’s not allowed. Goto, break and continue statements may lead to code structure that

is hard to read.

 Documentation rules

 1. Documentation is written inside the header file
 2. Each public member must be documented, according to the
 Doxygen documentation rules
 3. All function arguments should be documented, in addition of the
 direction tag
 4. Group of variables or functions should be placed inside the group tag
 5. Documented structures, enums, typedefs and macros, should have
 appropriate tag in addition of brief description

Page 38 m i k r o S D K M A N U A L V E R S I O N 1.0 V E R S I O N 1.0 m i k r o S D K M A N U A L Page 39

typedef enum
{
 CLICK_COLOR_RED,
 CLICK_COLOR_BLACK
 CLICK_COLOR_WHITE

}T_click_colors;

/**
 * @brief Function Example
 *
 * @param[in] inPar input parameter
 * @param[out] outPar output parameter
 * @retval 0 successful operation
 *
 * Additiona desription...
 */
uint8_t function(uint8_t inPar, uint8_t *outPar);

The mikroSDK standard defines a set of coding rules. Following these rules ensures
that the library can retain its portability among other platforms and architectures.

SUMMARY

Page 40 m i k r o S D K M A N U A L V E R S I O N 1.0

In the following section, the practical usage of the mikroSDK will be demonstrated.

There are several simple steps that needs to be taken, before starting to work with the

mikroSDK:

 ∫ The mikroBUS API .mpkg package for the used compiler and the .mpkg library

 for the desired click board need to be downloaded and installed.

 ∫ After the installation, both of them should appear as new nodes, inside

 the Library Manager of the used compiler.

 ∫ Right click to the newly installed click library item in the Library Manager

 and click Examples to open examples folder.

 ∫ Double click to project file to open it.

This will load project for the click board inside the working environment. The examples

provided are already configured for the default development systems:

 – PIC Compilers

 + EasyPIC PRO v7 + P18F87K22

 – PIC32 Compilers

 + EasyPIC Fusion v7 + P32MX795F512L

 – dsPIC Compilers

 + EasyPIC Fusion v7 + P33FJ256GP710A

 – AVR Compilers

 + EasyAVR v7 + ATMEGA32

 - FT90x Compilers

 + EasyFT90x + FT900

P r a c t i c a l U s a g e
of the mikroSDK in MikroE compilers

Page 40 m i k r o S D K M A N U A L V E R S I O N 1.0 V E R S I O N 1.0 m i k r o S D K M A N U A L Page 41

 – ARM Compilers

 + EasyMX PRO v7 for SMT32 + STM32F107VC (STM32 Vendor)

 + EasyMX PRO v7 for TIVA + TM4C129XNCZAD (TI Vendor)

 + HEXIWEAR docking station (KINETIS Vendor)

 + Clicker 2 for CEC1702 (Microchip Vendor)

 + Clicker 2 for MSP432 (TI Vendor)

So, if any of these systems are used, all it needs to be done is:

 Go to Build > Rebuild all sources (Alt + F9)

 Go to Build > Build + Program (Ctrl + F11)

This will program the used MCU and the application demo example will work in out of

box manner, without any additional interventions on the code. The click board should

be inside the proper mikroBUS™ socket which can be clearly seen in the system and

application Init functions, in most cases it is the first socket.

In cases that some other development system supported by the mikroSDK is used:

 Select the proper MCU inside “Project settings” and the used system

 will appear in Library Manager - check it

 Go to Project > Edit project and load proper scheme for the

 used MCU (Ctrl + Shift + E)

 Go to Build > Rebuild all sources (Alt + F9)

 Go to Build > Build + Program (Ctrl + F11)

If there is a need to change the used mikroBUS™ socket, all it needs to be done, is to

change few characters inside system Init and application Init functions inside the

application demo example.

Page 42 m i k r o S D K M A N U A L V E R S I O N 1.0

S O F T W A R E L I C E N S E

Copyright (c) 2017, MikroElektronika - All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,

 this list of conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions and the following disclaimer in the documentation and/or

 other materials provided with the distribution.

 3. All advertising materials mentioning features or use of this software

 must display the following acknowledgement: This product includes

 software developed by the MikroElektronika.

 4. Neither the name of the MikroElektronika nor the names of its

 contributors may be used to endorse or promote products derived

 from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY MIKROELEKTRONIKA ‘’AS IS’’ AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
MIKROELEKTRONIKA BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

December 20, 2017 - version 1.0 – Initial release

D O C U M E N T H I S T O R Y

Page 42 m i k r o S D K M A N U A L V E R S I O N 1.0 V E R S I O N 1.0 m i k r o S D K M A N U A L Page 43

libstock.mikroe.com

mikroe.com/mikrosdk

mikroe.com/mikrobus

DISCLAIMER

All the products owned by MikroElektronika are protected by copyright law and international copyright treaty. Therefore, this manual is to
be treated as any other copyright material. No part of this manual, including product and software described herein, may be reproduced,
stored in a retrieval system, translated or transmitted in any form or by any means, without the prior written permission of MikroElektronika.
The manual PDF edition can be printed for private or local use, but not for distribution. Any modification of this manual is prohibited.

MikroElektronika provides this manual ‘as is’ without warranty of any kind, either expressed or implied, including, but not limited to, the
implied warranties or conditions of merchantability or fitness for a particular purpose.

MikroElektronika shall assume no responsibility or liability for any errors, omissions and inaccuracies that may appear in this manual.
In no event shall MikroElektronika, its directors, officers, employees or distributors be liable for any indirect, specific, incidental or
consequential damages (including damages for loss of business profits and business information, business interruption or any other
pecuniary loss) arising out of the use of this manual or product, even if MikroElektronika has been advised of the possibility of such
damages. MikroElektronika reserves the right to change information contained in this manual at any time without prior notice, if necessary.

TRADEMARKS

The MikroElektronika name and logo, mikroC, mikroBasic, mikroPascal, Visual TFT, Visual GLCD, mikroProg, Ready, MINI, mikroBUS™, EasyPIC,
EasyAVR, Easy8051, click boards™ and mikromedia are trademarks of MikroElektronika. All other trademarks mentioned herein are property
of their respective companies.
All other product and corporate names appearing in this manual may or may not be registered trademarks or copyrights of their respective
companies, and are only used for identification or explanation and to the owners’ benefit, with no intent to infringe.

Copyright © 2017 MikroElektronika. All Rights Reserved.

