## MAX25405

## IR Gesture Sensor with Lens for Automotive Applications

## General Description

The MAX25405 is a low-cost, data-acquisition system for gesture and proximity sensing. Detection distance is improved by integrating a complete optical system consisting of lens, aperture, visible light filter, and a $6 \times 10$ photodetector array. The MAX25405 recognizes the following independent gestures:

- Hand swipe gestures (left, right, up, down, wave)
- Air click
- Flicks
- Finger and hand rotation (clockwise and counter clockwise)
- Multizone proximity detection
- Linger to click

The proximity, hand detection, and gesture recognition functions of the MAX25405 operate by detecting the light reflected from the controlled IR-LED light source with an integrated $6 \times 10$-element optical sensor array. The MAX25405 can detect these gestures even when exposed to bright ambient light. A low-power, low-cost CPU, such as the MAX32630, is required to process the data from the sensor.
This discrete light source is created externally with one or more FETs driven directly from the MA25405. The light source's PWM duty cycle is programmable from $1 / 16$ to $16 / 16$. The LEDs are pulsed on one or more times in a programmable sequence repeated for every sample.
For flexibility, the MAX25405 supports two different serial communication protocols: $\mathrm{I}^{2} \mathrm{C}(400 \mathrm{kHz})$ and $\mathrm{SPI}(6 \mathrm{MHz})$.
The MAX25405 is available in a $4 \mathrm{~mm} \times 4 \mathrm{~mm}, 20$-pin, optical QFN package.

## Applications

- Central Information Display Control
- Rear-Seat Entertainment Systems
- Door, Moon Roof, and Trunk Control
- Mechanical Switch Replacement
- Occupant Detection


## Benefits and Features

- Low-Cost, Flexible Gesture-Sensing Solution for Automotive Applications
- Low-Power, Low-Cost External CPU Processes Sensor Output
- Supports Swipe, Rotation, and Proximity Gestures
- Highly Integrated
- Integrated Lens, Aperture, and Filter
- 60-Pixel IR Photodiode Array
- Integrated LED Driver
- $400 \mathrm{kHz} \mathrm{I}^{2} \mathrm{C}$ and 6 MHz SPI Serial Interfaces
- Operates in 120k Lux Ambient Light
- AEC-Q100 Qualified
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Operation
- MSL1
- Ultra-Low-Power Operation
- 1 mA at 3.3 V
- Compact $4 \mathrm{~mm} \times 4 \mathrm{~mm} \times 1.35 \mathrm{~mm}, 20-\mathrm{Pin}$, SideWettable QFN Package

Ordering Information appears at the end of the data sheet. Applications

## Simplified System Diagram



## IR Gesture Sensor with Lens for Automotive

 Applications
## TABLE OF CONTENTS

General Description ..... 1
Applications ..... 1
Benefits and Features ..... 1
Simplified System Diagram ..... 2
Absolute Maximum Ratings ..... 6
Package Information ..... 6
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ QFN ..... 6
Electrical Characteristics ..... 6
Pin Configuration ..... 9
MAX25405 ..... 9
Pin Description ..... 9
Functional Diagrams ..... 11
Block Diagram ..... 11
Detailed Description ..... 12
Recommended Operating Conditions ..... 12
Register Map ..... 13
MAX25405 ..... 13
Register Details ..... 16
Applications Information ..... 29
Principle of Operation. ..... 29
Operation Mode ..... 29
CDS Mode 0 ..... 29
CDS Mode 1 ..... 29
MAX25405 Sample-Sequence Timing ..... 29
Array Orientation ..... 31
${ }^{2}{ }^{2} \mathrm{C}$ Serial Interface ..... 31
Enabling ${ }^{2}{ }^{2} \mathrm{C}$ or SPI communications ..... 31
START and STOP Conditions ..... 32
Early STOP Conditions ..... 32
Acknowledge ..... 32
Write Data Format ..... 32
Read Data Format. ..... 33
SPI Interface. ..... 34
Typical Application Circuits ..... 36
Typical Application Circuit with External FET LED Drive ..... 36
Typical Application Circuit with Internal Current Drive ..... 37
Ordering Information ..... 38
Revision History ..... 39
MAX25405 IR Gesture Sensor with Lens for AutomotiveApplications

## LIST OF FIGURES

Figure 1. Timing Setting: NCDS $=2$, NRPT $=2$, CRST $=1$ ..... 30
Figure 2. Timing Setting: NCDS $=2$, NRPT $=2, C R S T=0$ ..... 30
Figure 3. Array Orientation Relative to Pin 1 ..... 31
Figure 4. START, REPEAT START, STOP Conditions ..... 31
Figure 5. ACKNOWLEDGE ..... 32
Figure 6. Reading 1 Byte of Indexed Data ..... 34
Figure 7. Reading N Bytes of Indexed Data ..... 34
Figure 8. SPI Write ..... 35
Figure 9. SPI Read ..... 35

## LIST OF TABLES

Table 1. Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 2. Sequence Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 3. I²C Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

## IR Gesture Sensor with Lens for Automotive Applications

## Absolute Maximum Ratings



Short-Circuit Between DRV and GND $\qquad$ Continuous
Continuous Power Dissipation (Multilayer Board) ( $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$, derate $39.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$.) 0 mW to 2191 mW
Operating Temperature Range ............................... $40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Operating Junction Temperature ...................................... $+125^{\circ} \mathrm{C}$
Storage Temperature Range .............................. $-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Temperature (Reflow)......................................... $260^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10s).................................... $300^{\circ} \mathrm{C}$

## Package Information

4mm x 4mm QFN

| Package Code | Q2044Y+3 |
| :--- | :--- |
| Outline Number | $\underline{21-100562}$ |
| Land Pattern Number | $\underline{90-100083}$ |
| Thermal Resistance, Four-Layer Board: | $24.7(\mathrm{C} / \mathrm{W})$ |
| Junction to Ambient $\left(\theta_{\mathrm{JA}}\right)$ | $4.7(\mathrm{C} / \mathrm{W})$ |
| Junction to Case $\left(\theta_{\mathrm{JC}}\right)$ |  |

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", " " $\#$ ", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

## Electrical Characteristics

(MAX25405 Typical Application Circuit, $\mathrm{V}_{\mathrm{DDIO}}=1.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{LDO} \mathrm{IN}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}$ LED $=2.7 \mathrm{~V}$ to 3.6 V , LDO_OUT connected to $\mathrm{V}_{\mathrm{DD}} \cdot \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typ values: $\mathrm{V}_{\mathrm{DDIO}}=3.3 \mathrm{~V}, \mathrm{LDO} \mathrm{IN}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{LED}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. (Note 1) Default register settings (Note 3).)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DC Characteristics |  |  |  |  |  |  |
| LDO_IN Supply Voltage | LDO IN | Note 2 | 2.7 | 3.3 | 5.5 | V |
| LDO_OUT Supply Voltage | LDO_OUT |  | 1.7 | 1.8 | 2.0 | V |
| V ${ }_{\text {DD }}$ Supply Voltage | $V_{\text {DD }}$ | Note 2 | 1.7 | 1.8 | 2.0 | V |
| Logic Supply Voltage | VDDIO | Note 2 | 1.7 | 3.3 | 5.5 | V |
| LDO_IN Current | lido_IN | LDO_OUT connected to V ${ }_{\text {DD }}$. |  | 0.8 |  | mA |
| Shutdown Current | ISHDN | Register 0x02 Bit 7 = 1 |  | 6 |  | $\mu \mathrm{A}$ |
| Power-Up Time | TON | $\begin{aligned} & \text { Note 4, } \mathrm{V}_{\text {LDO_OUT }}=\mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}, \\ & \mathrm{~V}_{\text {LDO_IN }}=\mathrm{V}_{\text {DDIO }}=2.7 \mathrm{~V} \end{aligned}$ |  | 6 |  | ms |

## IR Gesture Sensor with Lens for Automotive Applications

## Electrical Characteristics (continued)

(MAX25405 Typical Application Circuit, $\mathrm{V}_{\mathrm{DDIO}}=1.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{LDO} \mathrm{IN}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{LED}}=2.7 \mathrm{~V}$ to 3.6 V , LDO_OUT connected to $\mathrm{V}_{\mathrm{DD}} . \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typ values: $\mathrm{V}_{\mathrm{DDIO}}=3.3 \mathrm{~V}, \mathrm{LDO} \mathrm{IN}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{LED}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. (Note 1) Default register settings (Note 3).)

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IR LED DRIVER |  |  |  |  |  |  |  |
| LED Current | ILED | $\begin{aligned} & \text { DRV Voltage = } \\ & 1.8 \mathrm{~V} \end{aligned}$ | DRV[3:0] = 0000 |  | 0 |  | mA |
|  |  |  | DRV[3:0] = 0001 |  | 13.3 |  |  |
|  |  |  | DRV[3:0] = 0010 |  | 26.7 |  |  |
|  |  |  | DRV[3:0] = 0011 |  | 40 |  |  |
|  |  |  | DRV[3:0] = 0100 |  | 53.3 |  |  |
|  |  |  | DRV[3:0] = 0101 |  | 66.7 |  |  |
|  |  |  | DRV[3:0] = 0110 |  | 80 |  |  |
|  |  |  | DRV[3:0] = 0111 |  | 93.3 |  |  |
|  |  |  | DRV[3:0] = 1000 |  | 106.7 |  |  |
|  |  |  | DRV[3:0] = 1001 |  | 120 |  |  |
|  |  |  | DRV[3:0] = 1010 |  | 133.3 |  |  |
|  |  |  | DRV[3:0] = 1011 |  | 146.7 |  |  |
|  |  |  | DRV[3:0] = 1100 |  | 160 |  |  |
|  |  |  | DRV[3:0] = 1101 |  | 173.3 |  |  |
|  |  |  | DRV[3:0] = 1110 |  | 186.7 |  |  |
|  |  |  | DRV[3:0] = 1111 | 180 | 200 | 220 |  |
| LED Current Accuracy |  | $\mathrm{I}_{\text {LED }}=200 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DRV}}=0.8 \mathrm{~V}$ to 3.6 V |  | -10 |  | 10 | \% |

IR RECEIVER CHARACTERISTICS

| Field of View | FOV |  |  | +/-30 | Deg |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Optical Response |  | External 940nm collimated light source with irradiance $=37 \mu \mathrm{~W} / \mathrm{cm}^{2}$. ADC full scale $=8192$ counts. Optical response is the average response of the center four pixels. Note 5 |  | 4000 | Counts |
| DIGITAL CHARACTERISTICS |  |  |  |  |  |
| Output Low-Voltage SDA, INT | V OL | $\mathrm{I}_{\text {SINK }}=6 \mathrm{~mA}$, open-drain outputs |  | 0.4 | V |
| Output Low-Voltage DOUT, SYNC, ELED | VOL | $\mathrm{I}_{\text {SINK }}=1 \mathrm{~mA}, \mathrm{CMOS}$ outputs |  | 0.4 | V |
| Output High Voltage DOUT, SYNC, ELED | $\mathrm{V}_{\mathrm{OH}}$ | ISOURCE $=1 \mathrm{~mA}, \mathrm{CMOS}$ outputs | $\begin{aligned} & \hline 0.75 \mathrm{x} \\ & \mathrm{~V}_{\mathrm{DDIO}} \\ & \hline \end{aligned}$ |  | V |
| Leakage Current |  |  |  | 1.0 | $\mu \mathrm{A}$ |
| Input Low Voltage SDA/ DIN, SCL, SEL, $\overline{C S}$, SYNC | VIL |  |  | $\begin{gathered} 0.3 x \\ \text { VDDIO } \end{gathered}$ | V |
| Input High Voltage SDA/ DIN, SCL, SEL, $\overline{C S}$, SYNC | $\mathrm{V}_{\mathrm{IH}}$ |  | $\begin{gathered} 0.7 x \\ \text { V DDIO }^{2} \end{gathered}$ |  | V |
| Input Capacitance |  |  |  | 3 | pF |

## IR Gesture Sensor with Lens for Automotive Applications

## Electrical Characteristics (continued)

(MAX25405 Typical Application Circuit, $\mathrm{V}_{\mathrm{DDIO}}=1.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{LDO} \mathrm{IN}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{LED}}=2.7 \mathrm{~V}$ to 3.6 V , LDO_OUT connected to $\mathrm{V}_{\mathrm{DD}} . \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typ values: $\mathrm{V}_{\mathrm{DDIO}}=3.3 \mathrm{~V}, \mathrm{LDO} \mathrm{IN}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{LED}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. (Note 1) Default register settings (Note 3).)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Internal Oscillator Frequency |  |  | 2.5 | 2.56 | 2.62 | MHz |
| $1^{2} \mathrm{C}$ TIMING CHARACTERISTICS SDA, SCL |  |  |  |  |  |  |
| ${ }^{12} \mathrm{C}$ Clock Rate | $\mathrm{f}_{\text {SCL }}$ | Note 2 |  |  | 400 | kHz |
| SCL Pulse Width | tow | Note 4 | 1.3 |  |  | $\mu \mathrm{s}$ |
|  | $\mathrm{t}_{\mathrm{HIGH}}$ | Note 4 | 0.6 |  |  |  |
| Data Hold Time | $\mathrm{t}_{\mathrm{HD}}$ | Note 4 | 0 |  | 900 | ns |
| Data Setup Time | tSU | Note 4 | 100 |  |  | ns |
| SPI TIMING CHARACTERISTICS $\overline{\mathbf{C S}}$, SCL, DIN and DOUT |  |  |  |  |  |  |
| SCL Frequency | $\mathrm{f}_{\text {CLK }}$ | Note 2 |  |  | 6 | MHz |
| SCL Pulse Width High | $\mathrm{t}_{\mathrm{CH}}$ | Note 4 | 75 |  |  | ns |
| SCL Pulse Width Low | $\mathrm{t}_{\mathrm{CL}}$ | Note 4 | 75 |  |  | ns |
| $\overline{\mathrm{CS}}$ Fall to SCL Rise Setup Time | tcss | Note 4 | 25 |  |  | ns |
| DIN to SCL Rise Setup Time | ${ }^{t}$ DS | Note 4 | 20 |  |  | ns |
| DIN to SCL Rise Hold Time | $t_{\text {DH }}$ | Note 4 | 10 |  |  | ns |
| SCLK Fall to SD0 Transition | toot |  |  |  | 45 | ns |

Note 1: Limits are $100 \%$ tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$. Operation at $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ is guaranteed by design and characterization.
Note 2: Condition of production test.
Note 3: Default register settings $0 \times 01=0 \times 04,0 \times 02=0 \times 02,0 \times 03=0 \times 24,0 \times 04=0 \times 8 \mathrm{C}, 0 \times 05=0 \times 08,0 \times 06=0 \times 0 F, 0 \times C 1=0 \times 0 \mathrm{~A}, 0 \times A 5$ $=0 \times 88,0 \times A 6=0 \times 88,0 \times A 7=0 \times 88,0 \times A 8=0 \times 88,0 \times A 9=0 \times 88$.
Note 4: Not production tested. Guaranteed by design and characterization.
Note 5: Count up A, eliminate B mode. Default register setting with the following exceptions: $0 \times 04=0 \times 8 \mathrm{E}, 0 \times 05=0 \times 00$.

## Pin Configuration

MAX25405


## Pin Description

| PIN | NAME | FUNCTION |  |  | REF SUPPLY | TYPE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | LDO_IN | Connect to low-noise ( $\mathrm{V}_{\mathrm{N}}<150 \mathrm{mV} \mathrm{V}_{\mathrm{PP}}$ ) 3.3 V supply through a $390 \Omega$ resistor. Bypass with at least a $2.2 \mu \mathrm{~F}$ ceramic capacitor. See Typical Application Circuits. |  |  | 3.3 V | Power |
| 2 | LDO_OUT | Bypass with a $1.0 \mu \mathrm{~F}$ ceramic capacitor. See Typical Application Circuits. Connect to $\mathrm{V}_{\mathrm{DD}}$ (Pin 3). |  |  | 1.8V | Regulated Output |
| 3 | $V_{D D}$ | Connect to LDO_OUT(Pin 2). $\mathrm{V}_{\mathrm{DD}}$ is the supply for the internal digital circuitry. |  |  | 1.8 V | Power |
| 4 | $\overline{\mathrm{CS}}$ | SPI Chip Select/ $/{ }^{2} \mathrm{C}$ Address Select |  |  | $V_{\text {DDIO }}$ | Input |
|  |  | $\overline{\mathrm{CS}}$ | Write Address | Read Address |  |  |
|  |  | 0 | 9E | 9F |  |  |
|  |  | 1 | A0 | A1 |  |  |
| 5 | SCL | $\mathrm{I}^{2} \mathrm{C}$ Serial Clock. For ${ }^{2} \mathrm{C}$ c operation, pull up to $\mathrm{V}_{\text {DDIO }}$ with $4.7 \mathrm{k} \Omega$. |  |  | $\mathrm{V}_{\text {DDIO }}$ | Input |
| 6, 8, 10 | NC | Connect to ground. |  |  |  | No Connect |

## Pin Description (continued)

| PIN | NAME | FUNCTION | REF SUPPLY | TYPE |
| :---: | :---: | :---: | :---: | :---: |
| 7 | SDA/DIN | When the SEL pin is connected to $V_{D D}$, Pin 7 becomes SDA for $I^{2} \mathrm{C}$ communication. When the SEL pin is connected to GND, Pin 7 becomes DIN for SPI communication. For I ${ }^{2} \mathrm{C}$ operation, pull SDA up to $V_{\text {DDIO }}$ with $4.7 \mathrm{k} \Omega$. | VDDIO | Input/Output |
| 9 | DOUT | SPI Data Out | $\mathrm{V}_{\text {DDIO }}$ | Output |
| 11 | ELED | External LED CMOS Level Voltage PWM Drive Output. This pin drives the gate of either a p-channel FET or an n-channel FET. A resistor in series with the FET's drain limits the maximum pulse current supplied to the external LED. ELED output level for a logic low is 0 V and for a logic high is $\mathrm{V}_{\text {DDIO }}$. <br> Note: When using a $1.8 \mathrm{~V} \mathrm{~V}_{\text {DDIO }}$, a MOSFET with very low threshold voltage ( $\mathrm{V}_{\mathrm{TH}}<1 \mathrm{~V}$ ) should be used to ensure minimal $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$. | VDDIO | Output |
| 12 | $\mathrm{V}_{\text {LED }}$ | ESD Protection for DRV Pin. Internal protection diodes clamp negative pulses to ground and positive pulses to the same supply used to supply the external LED. Bias $\mathrm{V}_{\text {LED }}$ at 3.3 V for typical applications. If the DRV pin is not used, it should be grounded to PGND. | $V_{\text {LED }}$ | Power |
| 13 | PGND | LED driver ground when DRV pin is used to drive LED |  | GND |
| 14 | DRV | Direct LED Current Drive. When the MAX25405 is configured for direct LED drive, connect the DRV pin to the cathode of the LED. Connect the LED's anode to the LED supply to V ${ }_{\text {LED }}$ for ESD protection. When external current drive is not used, DRV should be grounded along with the $V_{\text {LED }}$ pin. | VLED | Output |
| 15 | INT | Interrupt Signal. At the end of a conversion sample sequence, the $\overline{\text { INT }}$ pin goes low. The host $\mu \mathrm{P}$ can monitor this pin to determine when the ADC output registers are ready to be read. INT pin should be pulled up with a $4.7 \mathrm{k} \Omega$ resistor to $\mathrm{V}_{\text {DDIO }}$. The status register $0 \times 00$ must be read once for the $\overline{\mathrm{NT}}$ pin to become active. | V DDIO | Input/Output |
| 16 | SYNC | External Synchronization Pin. Driving SYNC with a controlled logic signal prevents simultaneous flashing of LEDs in systems configured with two MAX25405 sensors. | VDDIO | Input/Output |
| 18 | VDDIO | Digital I/O Supply Pin. The digital I/O is compatible with 1.8 V , 3.3 V , or 5 V CMOS logic levels. | VDDIO | Power |
| 19 | SEL | Serial Interface Mode Select: $\begin{aligned} & \mathrm{SEL}=\mathrm{V}_{\mathrm{DD}}: \mathrm{I}^{2} \mathrm{C} \\ & \mathrm{SEL}=\mathrm{GND}: \mathrm{SPI} \end{aligned}$ | $V_{\text {DDIO }}$ | Input |
| 17, 20 | GND | Ground |  | GND |
| EP | Backside Paddle | This pin must be connected to ground. |  | Backside Paddle |

IR Gesture Sensor with Lens for Automotive Applications

## Functional Diagrams

## Block Diagram



## IR Gesture Sensor with Lens for Automotive

 Applications
## Detailed Description

The proximity, hand-detection, and gesture-recognition functions are achieved by detecting the light reflected from the controlled IR-LED light source while rejecting ambient light. An integrated $6 \times 10$-element optical sensor array performs the light measurements. This discrete light source is created externally with one or more FETs driven directly from the MA25405. The light source's PWM duty cycle is programmable from $1 / 16$ to $16 / 16$. The LEDs are pulsed on one or more times in a programmable sequence. This pulse sequence is repeated for every sample. A low-power, low-cost CPU, such as the MAX32630, is required to process the data from the sensor.

## Recommended Operating Conditions

Table 1. Recommended Operating Conditions

| PARAMETER | PIN NAME | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Range | LDO_IN | 2.7 | 3.3 | 5.5 | V |
|  | $\mathrm{V}_{\mathrm{DD}}$ | 1.7 | 1.8 | 2 |  |
|  | $V_{\text {DDIO }}$ | 1.7 | 3.3 | 5.5 |  |
| Bias Range | VLED | 2.7 | 3.3 | 3.6 |  |
| Maximum Supply Noise | LDO_IN |  | 150 |  | $m V_{\text {P-P }}$ |
|  | $\mathrm{V}_{\mathrm{DD}}$ |  | 50 |  |  |

## Register Map

MAX25405

| ADDRESS | NAME | MSB |  |  |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STATUS |  |  |  |  |  |  |  |  |  |
| $0 \times 00$ | $\frac{\text { INTERRUPT }}{\text { STATUS[7:0] }}$ | - | - | - | PWRON | - | EOCINT <br> S | - | - |

CONFIGURATION

| $0 \times 01$ | $\begin{aligned} & \text { MAIN } \\ & \begin{array}{l} \text { CONFIGURATION } \\ 1[7: 0] \end{array} \end{aligned}$ | - | EXSYNC[2:0] |  |  | - | $\underset{\mathrm{E}}{\mathrm{EOCINT}}$ | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0 \times 02$ | $\begin{aligned} & \text { MAIN } \\ & \text { CONFIGURATION } \\ & \underline{2[7: 0]} \end{aligned}$ | SHDN | RESET | - | SYNC | OSEN | OSTRIG | - | - |
| 0x03 | $\begin{aligned} & \text { SEQ CONFIGURATION } \\ & \text { 1[7:0] } \end{aligned}$ | SDLY[3:0] |  |  |  | TIM[2:0] |  |  |  |
| 0x04 | $\begin{aligned} & \text { SEQ CONFIGURATION } \\ & \underline{2[7: 0]} \end{aligned}$ | NRPT[2:0] |  |  |  | NCDS[2:0] |  | $\begin{gathered} \hline \text { CDSMO } \\ \text { DE } \end{gathered}$ |  |
| 0x05 | $\begin{aligned} & \text { AFE } \\ & \text { CONFIGURATION[7:0] } \end{aligned}$ | - | $\begin{gathered} \hline \text { ALC_CO } \\ \text { ARSE } \end{gathered}$ | - | - | ALCEN | - | PGA[1:0] |  |
| $0 \times 06$ | $\begin{aligned} & \text { LED } \\ & \text { CONFIGURATION[7:0] } \end{aligned}$ | - | - | - | - | DRV[3:0] |  |  |  |
| ADC |  |  |  |  |  |  |  |  |  |
| 0x10 | ADC00H[7:0] | - | - | - | - | - | - | - | - |
| 0x11 | ADC00L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 12$ | ADC01H[7:0] | - | - | - | - | - | - | - | - |
| 0x13 | ADC01L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 14$ | ADC02H[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 15$ | ADC02L[7:0] | - | - | - | - | - | - | - | - |
| 0x16 | ADC03H[7:0] | - | - | - | - | - | - | - | - |
| 0x17 | ADC03L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 18$ | ADC04H[7:0] | - | - | - | - | - | - | - | - |
| 0x19 | ADC04L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 1 \mathrm{~A}$ | ADC05H[7:0] | - | - | - | - | - | - | - | - |
| 0x1B | ADC05L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 1 \mathrm{C}$ | ADC06H[7:0] | - | - | - | - | - | - | - | - |
| 0x1D | ADC06L[7:0] | - | - | - | - | - | - | - | - |
| 0x1E | ADC07H[7:0] | - | - | - | - | - | - | - | - |
| 0x1F | ADC07L[7:0] | - | - | - | - | - | - | - | - |
| 0x20 | ADC08H[7:0] | - | - | - | - | - | - | - | - |
| 0x21 | ADC08L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 22$ | ADC09H[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 23$ | ADC09L[7:0] | - | - | - | - | - | - | - | - |
| 0x24 | ADC10H[7:0] | - | - | - | - | - | - | - | - |


| ADDRESS | NAME | MSB |  |  |  |  |  |  | LSB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0 \times 25$ | ADC10L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 26$ | ADC11H[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 27$ | ADC11L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 28$ | ADC12H[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 29$ | ADC12L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 2 \mathrm{~A}$ | ADC13H[7:0] | - | - | - | - | - | - | - | - |
| 0x2B | ADC13L[7:0] | - | - | - | - | - | - | - | - |
| 0x2C | ADC14H[7:0] | - | - | - | - | - | - | - | - |
| 0x2D | ADC14L[7:0] | - | - | - | - | - | - | - | - |
| 0x2E | ADC15H[7:0] | - | - | - | - | - | - | - | - |
| 0x2F | ADC15L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 30$ | ADC16H[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 31$ | ADC16L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 32$ | ADC17H[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 33$ | ADC17L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 34$ | ADC18H[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 35$ | ADC18L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 36$ | ADC19H[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 37$ | ADC19L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 38$ | ADC20H[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 39$ | ADC20L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 3$ A | ADC21H[7:0] | - | - | - | - | - | - | - | - |
| 0x3B | ADC21L[7:0] | - | - | - | - | - | - | - | - |
| 0x3C | ADC22H[7:0] | - | - | - | - | - | - | - | - |
| 0x3D | ADC22L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 3 \mathrm{E}$ | ADC23H[7:0] | - | - | - | - | - | - | - | - |
| 0x3F | ADC23L[7:0] | - | - | - | - | - | - | - | - |
| 0x40 | ADC24H[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 41$ | ADC24L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 42$ | ADC25H[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 43$ | ADC25L[7:0] | - | - | - | - | - | - | - | - |
| 0x44 | ADC26H[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 45$ | ADC26L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 46$ | ADC27H[7:0] | - | - | - | - | - | - | - | - |
| 0x47 | ADC27L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 48$ | ADC28H[7:0] | - | - | - | - | - | - | - | - |
| 0x49 | ADC28L[7:0] | - | - | - | - | - | - | - | - |
| 0x4A | ADC29H[7:0] | - | - | - | - | - | - | - | - |
| 0x4B | ADC29L[7:0] | - | - | - | - | - | - | - | - |
| 0x4C | ADC30H[7:0] | - | - | - | - | - | - | - | - |
| 0x4D | ADC30L[7:0] | - | - | - | - | - | - | - | - |


| ADDRESS | NAME | MSB |  |  |  |  |  |  | LSB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0x4E | ADC31H[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 4 \mathrm{~F}$ | ADC31L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 50$ | ADC32H[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 51$ | ADC32L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 52$ | ADC33H[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 53$ | ADC33L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 54$ | ADC34H[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 55$ | ADC34L[7:0] | - | - | - | - | - | - | - | - |
| 0x56 | ADC35H[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 57$ | ADC35L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 58$ | ADC36H[7:0] | - | - | - | - | - | - | - | - |
| 0x59 | ADC36L[7:0] | - | - | - | - | - | - | - | - |
| 0x5A | ADC37H[7:0] | - | - | - | - | - | - | - | - |
| 0x5B | ADC37L[7:0] | - | - | - | - | - | - | - | - |
| 0x5C | ADC38H[7:0] | - | - | - | - | - | - | - | - |
| 0x5D | ADC38L[7:0] | - | - | - | - | - | - | - | - |
| 0x5E | ADC39H[7:0] | - | - | - | - | - | - | - | - |
| 0x5F | ADC39L[7:0] | - | - | - | - | - | - | - | - |
| 0x60 | ADC40H[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 61$ | ADC40L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 62$ | ADC41H[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 63$ | ADC41L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 64$ | ADC42H[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 65$ | ADC42L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 66$ | ADC43H[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 67$ | ADC43L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 68$ | ADC44H[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 69$ | ADC44L[7:0] | - | - | - | - | - | - | - | - |
| 0x6A | ADC45H[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 6 \mathrm{~B}$ | ADC45L[7:0] | - | - | - | - | - | - | - | - |
| 0x6C | ADC46H[7:0] | - | - | - | - | - | - | - | - |
| 0x6D | ADC46L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 6 \mathrm{E}$ | ADC47H[7:0] | - | - | - | - | - | - | - | - |
| 0x6F | ADC47L[7:0] | - | - | - | - | - | - | - | - |
| 0x70 | ADC48H[7:0] | - | - | - | - | - | - | - | - |
| 0x71 | ADC48L[7:0] | - | - | - | - | - | - | - | - |
| 0x72 | ADC49H[7:0] | - | - | - | - | - | - | - | - |
| 0x73 | ADC49L[7:0] | - | - | - | - | - | - | - | - |
| 0x74 | ADC50H[7:0] | - | - | - | - | - | - | - | - |
| 0x75 | ADC50L[7:0] | - | - | - | - | - | - | - | - |
| 0x76 | ADC51H[7:0] | - | - | - | - | - | - | - | - |


| ADDRESS | NAME | MSB |  |  |  |  |  |  | LSB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0x77 | ADC51L[7:0] | - | - | - | - | - | - | - | - |
| 0x78 | ADC52H[7:0] | - | - | - | - | - | - | - | - |
| 0x79 | ADC52L[7:0] | - | - | - | - | - | - | - | - |
| 0x7A | ADC53H[7:0] | - | - | - | - | - | - | - | - |
| 0x7B | ADC53L[7:0] | - | - | - | - | - | - | - | - |
| 0x7C | ADC54H[7:0] | - | - | - | - | - | - | - | - |
| 0x7D | ADC54L[7:0] | - | - | - | - | - | - | - | - |
| 0x7E | ADC55H[7:0] | - | - | - | - | - | - | - | - |
| 0x7F | ADC55L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 80$ | ADC56H[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 81$ | ADC56L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 82$ | ADC57H[7:0] | - | - | - | - | - | - | - | - |
| 0x83 | ADC57L[7:0] | - | - | - | - | - | - | - | - |
| 0x84 | ADC58H[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 85$ | ADC58L[7:0] | - | - | - | - | - | - | - | - |
| $0 \times 86$ | ADC59H[7:0] | - | - | - | - | - | - | - | - |
| 0x87 | ADC59L[7:0] | - | - | - | - | - | - | - | - |
| CHANNEL | GAIN TRIMS |  |  |  |  |  |  |  |  |
| 0xA5 | COLUMN GAIN 2. 1[7:0] | CGAIN2[3:0] |  |  |  | CGAIN1[3:0] |  |  |  |
| 0xA6 | $\begin{aligned} & \text { COLUMN GAIN } 4 . \\ & 3 \text { 3[7:0] } \end{aligned}$ | CGAIN4[3:0] |  |  |  | CGAIN3[3:0] |  |  |  |
| 0xA7 | $\begin{aligned} & \text { COLUMN GAIN 6. } \\ & \text { 5[7:0] } \end{aligned}$ | CGAIN6[3:0] |  |  |  | CGAIN5[3:0] |  |  |  |
| 0xA8 | COLUMN GAIN 8, 7[7:0] | CGAIN8[3:0] |  |  |  | CGAIN7[3:0] |  |  |  |
| 0xA9 | $\begin{aligned} & \text { COLUMN GAIN } 10, \\ & \underline{9[7: 0]} \end{aligned}$ | CGAIN10[3:0] |  |  |  | CGAIN9[3:0] |  |  |  |
| LED CONTROL |  |  |  |  |  |  |  |  |  |
| 0xC1 | LED CTRL[7:0] | - | - | - | - | GAINSE L | DRV_EN | $\begin{gathered} \text { ELED_E } \\ \mathrm{N} \end{gathered}$ | $\begin{gathered} \text { ELED_P } \\ \text { OL } \end{gathered}$ |

## Register Details

## INTERRUPT STATUS ( $0 \times 00$ )

| BIT | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Field | - | - | - | PWRON | - | EOCINTS | - | - |
| Reset | - | - | - |  | - |  | - | - |
| Access <br> Type | - | - | - | Read Only | - | Read Only | - | - |

IR Gesture Sensor with Lens for Automotive Applications

| BITFIELD | BITS | DESCRIPTION | DECODE |
| :---: | :---: | :---: | :---: |
| PWRON | 4 | Power On Reset | PWRON = 1 indicates that a power-up event occurred, either because the part was turned on, or because there was a power-supply voltage glitch. All interrupt threshold settings in the registers are reset to power-on-default states, and should be examined if necessary. The INT pin is also pulled low. Once this bit is set, the only way to clear this bit is to read this register. <br> PWRON = 0 indicates normal operation; no interrupt event occurred. |
| EOCINTS | 2 | End Of Conversion Interrupt | EOCINTS $=1$ indicates that the most recent sample cycle has ended, and the newest ADC values are readable. This bit is cleared in one of the following ways: <br> - Main Status Register is read. <br> - Any of the four gesture/proximity ADC output registers is read. <br> - A new sample cycle begins. <br> The $\overline{\mathrm{NT}}$ pin is also cleared when EOCINTS $=1$ <br> This bit is always set to 0 if the EOCINTE bit is set to 0 , and the external $\overline{\mathrm{NT}}$ does not react to an end of conversion. <br> EOCINTS = 0 indicates that no interrupt trigger event occurred. |

## MAIN CONFIGURATION 1 (0×1)

| BIT | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Field | - | EXSYNC[2:0] | - | EOCINTE | - | - |  |  |
| Reset | - | $0 b 000$ | - | $0 b 1$ | - | - |  |  |
| Access <br> Type | - | Write, Read | - | Write, Read | - | - |  |  |


| BITFIELD | BITS | DESCRIPTION | DECODE |  |
| :---: | :---: | :---: | :---: | :---: |
| EXSYNC | 6:4 | External Sync | The 3 bits of EXSYNC[2:0] control the external synchronization feature of the MAX25405. This is required for the case where two MAX25405 devices are used in a system, and a means is needed to avoid simultaneous flashing of the two LEDs. If the host processor is available to perform this function, then the internal SNYC and one-shot modes described later can be used. If the host processor is not available to coordinate the sample timing, then the two MAX25405 parts in the system must self-coordinate by communicating through the SYNC pin. The 3 bits of EXSYNC control the operation of the SYNC pin for this purpose. |  |
|  |  |  | EXSYNC[2:0] | Function |
|  |  |  | 000 | The SYNC pin is set to input, but has no function. Tie the pin to a logic-high, low voltage, or a pulldown or pullup resistor. |
|  |  |  | 001 | The SYNC pin is set to input, and this MAX25405 functions as an LED SYNC slave |
|  |  |  | 010 | The SYNC pin is set to output, and this MAX25405 functions as an LED SYNC master |
|  |  |  | 011 | Same as 000 |
|  |  |  | 100 | Same as 000 |
|  |  |  | 101 | Same as 000 |
|  |  |  | 110 | Same as 000 |
|  |  |  | 111 | Same as 000 |
| EOCINTE | 2 | End-of-Conversion Interrupt Enable | ECOINTE = 1 enables the end-of-conversion interrupt. An end-of-conversion event triggers a hardware interrupt in which the INT pin is pulled low and EOCINTS bit (register $0 \times 00[2]$ ) is set high. <br> Note: $\overline{\mathrm{INT}}$ is cleared from the active state after six clock cycles if the processor does not clear it first by reading the status register. |  |

## MAIN CONFIGURATION 2 (0x2)

| BIT | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Field | SHDN | RESET | - | SYNC | OSEN | OSTRIG | - | - |
| Reset | ObO | ObO | - | ObO | ObO | ObO | - | - |
| Access <br> Type | Write, Read | Write, Read | - | Write, Read | Write, Read | Write, Read | - | - |


| BITFIELD | BITS | DESCRIPTION | DECODE |
| :---: | :---: | :---: | :---: |
| SHDN | 7 | Shutdown Control | SHDN = 1 places the MAX25405 into a powersave mode. While all registers remain accessible and retain data, ADC conversion data contained in them are previous values. Writable registers also remain accessible in shutdown. All interrupts are cleared. <br> SHDN $=0$ places the MAX25405 in normal operation. When the part returns from shutdown, the data in the registers is not current until the first conversion cycle is completed. |
| RESET | 6 | Reset Control | RESET = 1 triggers the power-on-reset sequence. All configuration, threshold, and data registers are reset to power-on state by writing a 1 to this bit, and an internal hardware reset pulse is generated. This bit then automatically becomes 0 after the RESET sequence is completed. Post-reset, the PWRON Interrupt is triggered. <br> RESET = 0 configures the MAX25405 for normal operation. |
| SYNC | 4 | Master Slave Synchronize | This bit is used for synchronizing and staggering LED pulses when multiple devices are used in the system. This prevents two devices from flashing their LEDs at the same time. This is a self-clearing bit. When set to 1 , it resets to 0 after one $\mathrm{I}^{2} \mathrm{C}$ clock. The rising edge of this bit aborts the current ADC conversion cycle and starts a new ADC conversion cycle (ADC conversion cycle includes LED pulse, precharge, and ADC conversion/integration time). The ADC conversion cycles repeat after the delay set by SDLY[3:0]. <br> Note 1: This scheme does not work for short SDLY settings. When multiple devices are used in a system, there is a limit on the minimum SDLY. The SDLY of the master must be larger than the integration time of the slave. <br> Note 2: The software may periodically execute the sync sequence to take care of clock drift and mismatch on multiple devices. |
| OSEN | 3 | One-Shot Mode Enable | This bit enables one-shot mode. In this mode, the parameter SDLY is ignored, and no samples are automatically initiated. Instead, the system waits in idle mode until the bit OSTRIG (one-shot trigger) is set. This mode is used if the host processor requires full control over the timing of sample sequences, such as the case where there are multiple MAX25405 devices in one system. When combined with the EOCINT feature, the processor can be in full control of the start of a sample sequence, and then can be alerted when the sequence is done. When cleared to 0 , the sequencer reverts to normal operation. |


| BITFIELD | BITS | DESCRIPTION | DECODE |
| :--- | :---: | :--- | :--- |
|  |  |  | The bit OSTRIG is used for initiating one ADC <br> conversion cycle under software control when <br> OSEN is set to 1. When OSEN is set to 0, OSTRIG <br> is ignored. |
| OSTRIG | 2 | One-Shot Trigger | This is a self-clearing bit. When set to 1, it resets to <br> 0 after one I2 ${ }^{2}$ clock. The rising edge of this bit <br> starts an ADC conversion cycle. The cycle does <br> not repeat until OSTRIG is cleared, and then set to <br> 1 again. |

## SEQ CONFIGURATION 1 ( $0 \times 3$ )

| BIT | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Field | SDLY[3:0] | $\mathbf{0}$ |  |  |  |  |  |
| Reset | Ob0111 |  | TIM[2:0] | - |  |  |  |
| Access <br> Type | Write, Read | $0 b 011$ | - |  |  |  |  |


| BITFIELD | BITS | DESCRIPTION | DECODE |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & \hline \text { SDLY } \\ & {[3: 0]} \end{aligned}$ | Clock Counts | Delay Between Samples (ms) |
|  |  |  | 0000 | 0 | 0 |
|  |  |  | 0001 | 3998 | 1.56 |
|  |  |  | 0010 | 7995 | 3.12 |
|  |  |  | 0011 | 15990 | 6.25 |
|  |  |  | 0100 | 31980 | 12.49 |
|  |  |  | 0101 | 63960 | 24.98 |
|  |  |  | 0110 | 127920 | 49.97 |
| SDLY | 7:4 | End of Conversion Delay | 0111 | 255840 | 99.94 |
|  |  |  | 1000 | 511680 | 199.98 |
|  |  |  | 1001 | 1023360 | 399.75 |
|  |  |  | 1010 | 2046720 | 799.5 |
|  |  |  | $\begin{aligned} & \hline 1011- \\ & 1111 \end{aligned}$ | 4093440 | 1599 |

The 4 bits of SDLY[3:0] define 12 different sampledelay times for all channels. This added delay can be used to save power in power-sensitive applications where the 60 ADC do not need to be sampling continuously.

| BITFIELD |  | DESCRIPTION | DECODE |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TIM | 3:1 | Integration Time | The 3 bits of TIM[2:0] set the integration time for the ADC conversion, as shown below. |  |  |
|  |  |  | TIM[2:0] | LED Pulse Width (clock counts) | Integration Time ( $\mu \mathrm{s}$ ) |
|  |  |  | 000 | 16 | 6.25 |
|  |  |  | 001 | 32 | 12.5 |
|  |  |  | 010 | 64 | 25.0 |
|  |  |  | 011 | 128 | 50.0 |
|  |  |  | 100 | 256 | 100 |
|  |  |  | 101 | 512 | 200 |
|  |  |  | 110 | 1024 | 400 |
|  |  |  | 111 | 2048 | 800 |

## SEQ CONFIGURATION 2 (0x4)

| BIT | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Field | NRPT[2:0] | NCDS[2:0] | CDSMODE | - |  |  |  |
| Reset | 0b100 | Ob100 | $0 \mathrm{Ob0}$ | - |  |  |  |
| Access <br> Type | Write, Read | Write, Read | Write, Read | - |  |  |  |


| BITFIELD | BITS | DESCRIPTION | DECODE |  |
| :---: | :---: | :---: | :---: | :---: |
| NRPT | 7:5 | Number of Repeats | NRPT[2:0] sets the number of times the CDS sequence is repeated. Each repeat of the CDS sequence is identical to the previous-there is a single ALC pulse followed by one or more CDS A/ B pairs, as set by NCDS[2:0]. The integration counters are not reset during this repetitive sequence; they continue to accumulate the count. |  |
|  |  |  | NRPT[2:0] | Number of CDS sequences |
|  |  |  | 000 | 1 |
|  |  |  | 001 | 2 |
|  |  |  | 010 | 4 |
|  |  |  | 011 | 8 |
|  |  |  | 100 | 16 |
|  |  |  | 101 | 32 |
|  |  |  | 110 | 64 |
|  |  |  | 111 | 128 |


| BITFIELD | BITS | DESCRIPTION |  | DECODE |
| :---: | :---: | :---: | :---: | :---: |
| NCDS | 4:2 | Number of Coherent Double Samples | NCDS[2:0] sets the value of nCDS, the number of times that the CDS sequence is repeated within a single sample cycle after a single pulse of ALC. Setting nCDS to a value greater than 1 causes the programmed CDS sequence (Mode 0 or 1) to be repeated nCDS times after the single ALC pulse. The integration counters are not reset during the nCDS repeated sequences; they continue to accumulate the count. |  |
|  |  |  | NCDS[2:0] | Number of CDS sequences following a single ALC pulse |
|  |  |  | 000 | 1 |
|  |  |  | 001 | 2 |
|  |  |  | 010 | 4 |
|  |  |  | 011 | 8 |
|  |  |  | 100 | 16 |
|  |  |  | 101 | 32 |
|  |  |  | 110 | 64 |
|  |  |  | 111 | 128 |
| CDSMODE | 1 | Coherent Double Sampling Mode | CDSMODE | Description |
|  |  |  | 0 | Count up during sequence $A$ and down during sequence $B$ |
|  |  |  | 1 | Count up during sequence A , do not subtract sequence $B$ |

## AFE CONFIGURATION (0x5)

| BIT | 7 | 6 | 5 | 4 |  | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Field | - | $\begin{gathered} \text { ALC_COAR } \\ \text { SE } \end{gathered}$ | - | - |  | LCEN | - | PGA[1:0] |  |
| Reset | - | 0b0 | - | - |  | Ob1 | - | Ob00 |  |
| Access Type | - | Write, Read | - | - | Writ | , Read | - |  |  |
| BITFIELD | BITS | DESCRIPTION |  |  |  | DECODE |  |  |  |
| $\begin{aligned} & \text { ALC_COARS } \\ & \text { E } \end{aligned}$ | 6 | ALC Coarse Current Correction |  |  |  | Factory use only. Set to 0 . |  |  |  |
| ALCEN | 3 | Coarse Ambient Light Compensation Enable |  |  |  | ALCEN enables the coarse ambient light compensation circutis in the 60 analog front end channels. <br> $0=$ coarse ambient light compensation is not enabled. <br> 1 = coarse ambient light compensation is enabled. |  |  |  |

IR Gesture Sensor with Lens for Automotive Applications

| BITFIELD | BITS | DESCRIPTION | DECODE |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PGA | 1:0 | Programable Gain Amplifier | The 2 bits PGA[1:0] set the gain range of the ADC channels according to the table below. |  |  |
|  |  |  | PGA[1:0] | Relative ADC Gain | IREF (nA) |
|  |  |  | 00 | 1 | 16 |
|  |  |  | 01 | 1/4 | 64 |
|  |  |  | 10 | 1/16 | 256 |
|  |  |  | 11 | 1/32 | 512 |

## LED CONFIGURATION (0x6)

| BIT | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Field | - | - | - | - |  | DRV[3:0] |  |  |
| Reset | - | - | - | - |  | $0 b 0000$ |  |  |
| Access <br> Type | - | - | - | - |  | Write, Read |  |  |

IR Gesture Sensor with Lens for Automotive Applications


IR Gesture Sensor with Lens for Automotive Applications

COLUMN GAIN 2, 1 (0xA5)

| BIT | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Field | CGAIN2[3:0] | $\mathbf{0}$ |  |  |  |  |  |
| Reset | Ob1000 | CGAIN1[3:0] |  |  |  |  |  |
| Access <br> Type | Write, Read | Ob1000 |  |  |  |  |  |


| BITFIELD | BITS | DESCRIPTION | DECODE |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CGAIN2 | 7:4 | Column Gain 2 | There are ten different 4-bit column gains for the entire 60-channel array. Each trim value applies to one of the ten columns in the pixel array. |  |  |
|  |  |  | $\begin{aligned} & \text { GAIN } \\ & \text { (hex) } \end{aligned}$ | IREF Multiplication Factor | Gain Factor |
|  |  |  | 0x00 | 3.06 | 0.33 |
|  |  |  | 0x01 | 2.71 | 0.37 |
|  |  |  | 0x02 | 2.35 | 0.43 |
|  |  |  | 0x03 | 2.06 | 0.49 |
|  |  |  | 0x04 | 1.77 | 0.56 |
|  |  |  | 0x05 | 1.55 | 0.65 |
|  |  |  | 0x06 | 1.33 | 0.75 |
|  |  |  | 0x07 | 1.17 | 0.86 |
|  |  |  | 0x08 | 1.00 | 1.00 |
|  |  |  | 0x09 | 0.88 | 1.14 |
|  |  |  | 0x0A | 0.75 | 1.33 |
|  |  |  | 0x0B | 0.66 | 1.53 |
|  |  |  | 0x0C | 0.56 | 1.79 |
|  |  |  | 0x0D | 0.49 | 2.04 |
|  |  |  | 0x0E | 0.42 | 2.38 |
|  |  |  | 0x0F | 0.37 | 2.70 |


| BITFIELD | BITS | DESCRIPTION | DECODE |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CGAIN1 | 3:0 | Column Gain 1 | There are ten different 4-bit column gains for the entire 60-channel array. Each trim value applies to one of the ten columns in the pixel array. |  |  |
|  |  |  | GAIN <br> (hex) | $I_{\text {REF }}$ Multiplication Factor | Gain Factor |
|  |  |  | 0x00 | 3.06 | 0.33 |
|  |  |  | 0x01 | 2.71 | 0.37 |
|  |  |  | 0x02 | 2.35 | 0.43 |
|  |  |  | 0x03 | 2.06 | 0.49 |
|  |  |  | 0x04 | 1.77 | 0.56 |
|  |  |  | 0x05 | 1.55 | 0.65 |
|  |  |  | 0x06 | 1.33 | 0.75 |
|  |  |  | 0x07 | 1.17 | 0.86 |
|  |  |  | 0x08 | 1.00 | 1.00 |
|  |  |  | 0x09 | 0.88 | 1.14 |
|  |  |  | 0x0A | 0.75 | 1.33 |
|  |  |  | 0x0B | 0.66 | 1.53 |
|  |  |  | 0x0C | 0.56 | 1.79 |
|  |  |  | 0x0D | 0.49 | 2.04 |
|  |  |  | 0x0E | 0.42 | 2.38 |
|  |  |  | 0x0F | 0.37 | 2.70 |

## COLUMN GAIN 4, 3 (0xA6)

| BIT | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| FieId | CGAIN4[3:0] |  |  |  | $\mathbf{1}$ | $\mathbf{0}$ |
| Reset | Ob1000 | CGAIN3[3:0] |  |  |  |  |
| Access <br> Type | Write, Read | Ob1000 |  |  |  |  |
| BITFIELD | BITS | DESCRIPTION | Write, Read |  |  |  |
| CGAIN4 | $7: 4$ | Column Gain 4 | DECODE |  |  |  |
| CGAIN3 | $3: 0$ | Column Gain 3 | See description in CGAIN1. |  |  |  |

## COLUMN GAIN 6, 5 (0xA7)

| BIT | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Field | CGAIN6[3:0] |  |  |  |  | $\mathbf{0}$ |  |
| Reset | Ob1000 | CGAIN5[3:0] |  |  |  |  |  |
| Access <br> Type | Write, Read | Ob1000 |  |  |  |  |  |
| BITFIELD | BITS | WESCRIPTION Read |  |  |  |  |  |
| CGAIN6 | $7: 4$ | Column Gain 6 | DECODE |  |  |  |  |


| BITFIELD | BITS | DESCRIPTION | DECODE |
| :--- | :---: | :--- | :--- |
| CGAIN5 | $3: 0$ | Column Gain 5 | See description in CGAIN1. |

## COLUMN GAIN 8, 7 (0xA8)

| BIT | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Field | CGAIN8[3:0] |  |  |  |  | $\mathbf{0}$ |  |
| Reset | Ob1000 | OGAIN7[3:0] |  |  |  |  |  |
| Access <br> Type | Write, Read |  | Write, Read |  |  |  |  |


| BITFIELD | BITS | DESCRIPTION | DECODE |
| :--- | :---: | :--- | :--- |
| CGAIN8 | $7: 4$ | Column Gain 8 | See description in CGAIN1. |
| CGAIN7 | $3: 0$ | Column Gain 7 | See description in CGAIN1. |

## COLUMN GAIN 10, 9 (0xA9)

| BIT | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Field | CGAIN10[3:0] |  |  |  | $\mathbf{1}$ | $\mathbf{0}$ |
| Reset | Ob1000 | CGAIN9[3:0] | 0b1000 |  |  |  |
| Access <br> Type | Write, Read | Write, Read |  |  |  |  |
| BITFIELD | BITS | DESCRIPTION | DECODE |  |  |  |
| CGAIN10 | $7: 4$ | Column Gain 10 |  |  |  |  |
| CGAIN9 | $3: 0$ | Column Gain 9 | See description in CGAIN1. |  |  |  |

## LED CTRL ( $0 \times \mathrm{CC} 1$ )

| BIT | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Field | - | - | - | - | GAINSEL | DRV_EN | ELED_EN | ELED_POL |
| Reset | - | - | - | - | Ob0 | Ob0 | Ob0 | Ob0 |
| Access Type | - | - | - | - | Write, Read | Write, Read | Write, Read | Write, Read |
| BITFIELD | BITS |  | SC |  |  |  | CODE |  |
| GAINSEL | 3 | Factory Gain Trim Selection |  |  | Value | Enumeration | Decode |  |
|  |  |  |  |  | 0x0 | Gain Trim <br> Register Select | Address 0xA5 0xA9 (default) |  |
|  |  |  |  |  | 0x1 | Gain Trim <br> Register Selec | Internal Trim Value |  |
| DRV_EN | 2 | Current Drive Output Enable. |  |  | Value | Enumeration |  | Decode |
|  |  |  |  |  | 0x0 | DRV Output |  | Disabled |
|  |  |  |  |  | 0x1 | DRV Output |  | Enabled |


| BITFIELD | BITS | DESCRIPTION | DECODE |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ELED_EN | 1 | External LED Output Enable | ELED is an output pin design to drive a pMOS or nMOS switch with a PWM signal. |  |  |  |
|  |  |  | Value | Enumer | tion | Decode |
|  |  |  | 0x0 | Output |  | Disable |
|  |  |  | 0x1 | Output |  | Enable |
| ELED_POL | 0 | External LED Polarity Control | Value | Enumeration |  | Decode |
|  |  |  | 0x0 |  | Driv | MOS Switch |
|  |  |  | 0x1 |  | Driv | MOS Switch |

## Applications Information

## Principle of Operation

Two electrical techniques are used to reject ambient light: coarse correction, and fine correction. For coarse correction, the photo diode current is sampled and stored during time T1 when the IR LED is off. This current, which is a coarse measure of the ambient light, is then subtracted during the entire conversion cycle. The fine-correction method, however, uses coherent double sampling (CDS). An A pulse representing $I R+$ ambient is measured when the IR LED is pulsed on. $A$ second $B$ pulse is measured with the LED off, representing ambient light. Subtracting the $B$ pulse from the A pulse results in reflected IR with no common-mode ambient light (ambient-light compensation). The net reflected IR current is sampled with a 1 -bit first-order sigma-delta ADC. The ADC is sampled with a 2.5 MHz clock. Full scale of the ADC is given by:
$\mathrm{N}_{\mathrm{FS}}=$ TIM $\times$ NCDS $\times$ NRPTS
The ratio of ADC sample count $(N)$ to ADC full scale $\left(N_{F S}\right)$ is porportional to the ratio of IR current to ADC reference current (lREF),
$I_{n} / I_{R E F}=N / N_{F S}$.
The maximum resolution of the sigma-delta ADC is 15 bits or $N=32,768$ counts. Choosing large values for the full ADC scale mproves SNR while increasing integration time. The maximum current the ADC clips at is $I_{\text {REF }}$, while the minimum current is:
$I_{\min }=I_{R E F} / N_{F S}$.

## Operation Mode

The MAX25405 operates on a periodic sample schedule. When a sample is scheduled to occur, a sequence of digital signals activates the optical measurement circuits, i.e. pixels, and then collects the respective digital output data. When the sample sequence is finished, the pixels are disabled and placed in a low-power sleep mode. The register variable SDLY[3:0] controls the length of the sleep period. The pixels are held in this mode until the next scheduled sample sequence occurs. The timing of the periodic sampling schedule can be reset by setting the SYNC bit. In one-shot mode, (OSEN = 1), the periodic sampling is disabled, and the MAX25405 executes a sample sequence only when the OSTRIG bit is set.

The length and nature of the sampling sequence is controlled by the variables TIM[2:0], NRPT[2:0], and NCDS[2:0]. The variable CDSMODE selects one of the following methods to acquire the data during the sampling sequence.

## CDS Mode 0

CDS Mode 0 is the default mode of operation. Every sample sequence consists of two measurements, $A$ and $B$. In the $A$ sequence, the LED is energized and the channel counters count up. The A sequence is then repeated in the subsequent $B$ sequence, except the LED is not energized and the channel counters countdown, which reduces the value stored. This algorithm removes slow-moving offsets and optical interference.

## CDS Mode 1

CDS Mode 1 is similar to Mode 0 , except that in the $B$ sequence, the countdown is not subtracted. Use Mode 1 if there is no need for the additional offset correction.

## MAX25405 Sample-Sequence Timing

The timing specification is selectable with register variables, defined as follows:

- NCDS[2:0]: Number of CDS (A/B sequence) pairs, is also the number of LED pulses
- NRPT[2:0]: Number of ALC coarse correction + CDS pairs
- CRST: Enable the integrator reset between A/B sequences. The reset time is 16 clocks when CRST is high, or 0 when CRST is low.

The nominal clock frequency is 2.56 MHz , so a 256 -clock-cycle sample takes $100 \mu \mathrm{~s}$. Each cycle of the clock, TCK, is 391 ns .
Table 2. Sequence Timing Specification

| PARAMETER | FUNCTION | \# CLOCKS |
| :--- | :--- | :--- |
| T1 | ALC duration time | 256 |
| D1 | Delay time to start integration | 32 |
| T2 | LED ON pulse | Defined by TIM[2:0] |
| T3 | LED OFF pulse | T3 $=$ T2 |
| T4 | Reset time between A/B, CRST $=0$ | 0 |
| T4 | Reset time between A/B, CRST $=1$ | 16 |
| D2 | Fixed delay | 520 |



Figure 1. Timing Setting: $N C D S=2, N R P T=2, C R S T=1$


Figure 2. Timing Setting: $N C D S=2, N R P T=2, C R S T=0$

## Array Orientation



Figure 3. Array Orientation Relative to Pin 1

## $I^{2} \mathrm{C}$ Serial Interface

The MAX25405 IC features an ${ }^{2}$ ² $/$ SMBus-compatible, 2-wire serial interface consisting of a serial-data line (SDA), and a serial-clock line (SCL). SDA, and SCL facilitate communication between the IC and the master at clock rates up to 400 kHz . The master generates SCL and initiates data transfer on the bus. A master device writes data to the IC by transmitting the proper slave address, followed by the register address and then the data word. Each transmit sequence is framed by a START (S) or REPEATED START ( $\mathrm{S}_{\mathrm{R}}$ ) condition and a STOP (P) condition. Each word transmitted to the IC is 8 bits long and is followed by an acknowledge clock pulse. A master reading data from the IC transmits the proper slave address followed by a series of nine SCL pulses. The IC transmits data on SDA in sync with the master-generated SCL pulses. The master acknowledges receipt of each byte of data. Each read sequence is framed by a START or REPEATED START condition, a NOT ACKNOWLEDGE, and a STOP condition. SDA operates as both an input and an open-drain output. A pullup resistor is required on the SDA bus. SCL operates only as an input. A pullup resistor is required on SCL if there are multiple masters on the bus, or if the master in a single-master system has an open-drain SCL output. Series resistors in line with SDA and SCL are optional. Series resistors protect the digital inputs of the IC from high-voltage spikes on the bus lines and minimize crosstalk and undershoot of the bus signal.


Figure 4. START, REPEAT START, STOP Conditions

## Enabling ${ }^{2}{ }^{2} \mathrm{C}$ or SPI communications

When the SEL input is set to $V_{D D}$, the MAX25405 operates in $I^{2} \mathrm{C}$ mode. In this mode, the $\overline{\mathrm{CS}}$ input functions as the $\mathrm{I}^{2} \mathrm{C}$ address select pin. When $\overline{C S}=0$, the MAX25405 is preprogrammed with a slave address of $0 \times 9 \mathrm{E}$ for write and $0 \times 9 \mathrm{~F}$ for
read. When $\overline{\mathrm{CS}}$ is set to $\mathrm{V}_{\text {DDIO }}$, the logic adds 2 to the programmed ${ }^{2} \mathrm{C}$ address. In this case, the $I^{2} \mathrm{C}$ address is $0 x A 0$ for write and 0xA1 for read. The address is defined as the seven most significant bits (MSBs) followed by the read/write bit. Set the read/write bit to 1 to configure MAX25405 to read mode. Set the read/write bit to 0 to configure the MAX25405 to write mode. The address is the first byte of information sent to MAX25405 after the START condition.
When the SEL pin is set to GND, the MAX25405 operates in SPI mode. There is no device address for SPI communications. A given part is selected by setting a low state on its $\overline{\mathrm{CS}}$ pin. If there are multiple MAX25405 parts sharing the same SPI bus, then each must have its own $\overline{\mathrm{CS}}$ signal, but the parts can share the SCL and DOUT nets. When a part is deselected by setting its $\overline{\mathrm{CS}}$ signal high, the DOUT pin on that part is set to Hi Z , permitting another part to drive the shared DOUT net. The shared SCL net is always driven from the master at the desired serial-clock frequency, and all of the slave devices share that signal.
Table 3. $\mathrm{I}^{2} \mathrm{C}$ Slave Address

| $\overline{\mathbf{C S}}$ PIN | SLAVE ADDRESS FOR WRITING | SLAVE ADDRESS FOR READING |
| :---: | :---: | :---: |
| GND | 10011110 (0X9E) | 10011111 (0X9F) |
| $\mathrm{V}_{\mathrm{DD}}$ | 10100000 (0XA0) | 10100001 (0XA1) |

## START and STOP Conditions

SDA and SCL idle high when the bus is not in use. A master initiates communication by issuing a START condition. A START condition is a high-to-low transition on SDA with SCL high. A STOP condition is a low-to-high transition on SDA while SCL is high. A START condition from the master signals the beginning of a transmission to the IC. The master terminates transmission and frees the bus by issuing a STOP condition. The bus remains active if a REPEATED START condition is generated instead of a STOP condition.

## Early STOP Conditions

The IC recognizes a STOP condition at any point during data transmission except if the STOP condition occurs in the same high pulse as a START condition. For proper operation, do not send a STOP condition during the same SCL high pulse as the START condition.

## Acknowledge

The acknowledge bit (ACK) is a clocked ninth bit that the IC uses to handshake receipt of each byte of data when in write mode. The IC pulls down SDA during the entire master-generated ninth clock pulse if the previous byte is successfully received. Monitoring ACK allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master can retry communication. The master pulls down SDA during the ninth clock cycle to acknowledge receipt of data when the IC is in read mode. An ACKNOWLEDGE is sent by the master after each read byte to allow data transfer to continue. A NOT ACKNOWLEDGE is sent when the master reads the final byte of data from the IC, followed by a STOP condition.


Figure 5. ACKNOWLEDGE

## Write Data Format

A write to the IC includes transmission of a START condition, the slave address with the R/W bit set to 0,1 byte of data to
configure the internal register address pointer, one or more bytes of data, and a STOP condition. See figures illustrating the proper frame format for writing 1 byte of data to the IC and the frame format for writing $n$-bytes of data to the IC.
The slave address with the R/W bit set to 0 indicates that the master intends to write data to the IC. The IC acknowledges receipt of the address byte during the master-generated ninth SCL pulse.
The second byte transmitted from the master configures the IC's internal register address pointer. The pointer tells the IC where to write the next byte of data. An acknowledge pulse is sent by the IC upon receipt of the address pointer data.
The third byte sent to the IC contains the data written to the chosen register. An ACKNOWLEDGE pulse from the IC signals receipt of the data byte. The address pointer automatically increments to the next register address after each received data byte. This auto-increment feature allows a master to write to sequential registers within one continuous frame. [[Write 1 Byte]] and [[Write n Bytes]] illustrate how to write to multiple registers with one frame. The master signals the end of transmission by issuing a STOP condition.


## Read Data Format

Send the slave address with the R/W bit set to 1 to initiate a read operation. The IC acknowledges receipt of its slave address by pulling SDA low during the ninth SCL clock pulse. A START command followed by a read command resets the address pointer to register $0 \times 00$. The first byte transmitted from the IC is the contents of register $0 \times 00$. Transmitted data is valid on the rising edge of the master-generated serial clock (SCL). The address pointer automatically increments after each read-data byte. This automatic-increment feature allows all registers to be read sequentially within one continuous frame.
A STOP condition can be issued after any number of read-data bytes. If a STOP condition is issued and followed by another read operation, the first data byte to be read is from register $0 \times 00$, and subsequent reads automatically increment the address pointer until the next STOP condition. The address pointer can be preset to a specific register before a read command is issued. The master presets the address pointer by first sending the IC's slave address with the R/W bit set to 0 , followed by the register address. A REPEATED START condition is then sent, followed by the slave address with the R/W bit set to 1 . The IC transmits the contents of the specified register. The address pointer automatically increments after transmitting the first byte. Attempting to read from register addresses higher than 0xFF results in repeated reads of $0 x F F$. Note that $0 x B 0-0 x C 0$ are reserved registers. The master acknowledges receipt of each read byte during the acknowledge clock pulse. The master must acknowledge all correctly received bytes except the final byte, which must
be followed by a NOT ACKNOWLEDGE from the master and then a STOP condition.


Figure 6. Reading 1 Byte of Indexed Data


Figure 7. Reading N Bytes of Indexed Data

## SPI Interface

The MAX25405 4-wire serial interface is compatible with MICROWIRE, SPI, QSPI, and DSPs. The interface provides three inputs, SCL, $\overline{\mathrm{CS}}$, and DIN, and one output, DOUT. The chip-select input ( $\overline{\mathrm{CS}}$, active-low) frames the data loaded through the serial-data input (DIN). Following a $\overline{\mathrm{CS}}$ input high-to-low transition, the data is shifted in synchronously and latched into the input register on each rising edge of the serial-clock input (SCL).
The SPI interface in the MAX25405 has an 8-bit address, 8-bit command (but only 1-bit MSb is valid), and 8-bit data. The MAX25405 SPI only supports SPI mode 0 , clock polarity CPOL $=0$, clock phase CHPA $=0$.
Each serial operation word is 24 bits long. The serial-input register transfers its contents to the destination registers after loading 24 bits of data on the 24th SCL rising edge. To initiate a new SPI operation, drive $\overline{C S}$ high and then low to begin the next operation sequence, ensuring all relevant timing requirements are met. During $\overline{\mathrm{CS}}$ high periods, SCL is ignored, allowing communication to other devices on the same bus. SPI operations consisting of more than 24 SCL cycles are executed on the 24th SCL falling edge, using the first 3 bytes of data available. SPI operations consisting of less than 24 SCL cycles are not executed.
The SPI read operation is always operated in burst mode with bursts framed by $\overline{\mathrm{CS}}$. Therefore, to read all 120 bytes of ADC values, initiate a read operation as follows:
$\overline{\mathrm{CS}}$ High-Low Transition

1. Write 8 -bit add ( $0 \times 10$ or $0 \times 01$ is the high byte of ADC 00 's 2 -byte value)
2. Write 8 -bit read command ( $0 \times 80$ )
3. Read 8-bit ADC_00_h, high byte data output for ADC00
4. Read 8-bit ADC_00_I, low byte data output for ADC00
5. Read 8-bit ADC_01_h, ........
6. Read 8-bit ADC_01_I
7. ...
8. Read 8-bit ADC_58_h
9. Read 8-bit ADC_58_I
10. Read 8-bit ADC_59_h
11. Read 8-bit ADC_59_I

IR Gesture Sensor with Lens for Automotive Applications


Figure 8. SPI Write


Figure 9. SPI Read

## Typical Application Circuits

Typical Application Circuit with External FET LED Drive


Typical Application Circuits (continued)
Typical Application Circuit with Internal Current Drive


## Ordering Information

| PART NUMBER | TEMP RANGE | PIN-PACKAGE | TOP MARKING |
| :--- | :--- | :--- | :---: |
| MAX25405EQP/VY+ <br> MAX25405EQP/VY+T | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $20-\mathrm{pin} 4 \mathrm{~mm} \times 4 \mathrm{~mm}$ QFN | AAE |

+ Denotes a lead(Pb)-free/RoHS-compliant package.
T Denotes tape-and-reel.
The MAX25405 is an optical receiver and the assembly should include a 'no wash' approach to ensure contaminants are not deposited on the optical aperture.


## MAX25405

IR Gesture Sensor with Lens for Automotive Applications

Revision History

| REVISION <br> NUMBER | REVISION <br> DATE | DESCRIPTION | PAGES <br> CHANGED |
| :---: | :---: | :---: | :---: |
| 0 | $5 / 21$ | Release for market intro | - |

