The AAS33001 is a 360° angle sensor IC that provides contactless high-resolution angular position information based on magnetic circular vertical Hall (CVH) technology. It has a system-on-chip (SoC) architecture that includes: a CVH front end, digital signal processing to calculate the angular position information, and multiple output formats: serial protocol (SPI), pulse-width modulation (PWM), and either motor commutation (UVW) or encoder outputs (A, B, I). It also includes on-chip EEPROM technology, capable of supporting up to 100 read/write cycles, for flexible programming of calibration parameters. The AAS33001 is ideal for automotive applications requiring 0° to 360° angle measurements, such as electronic power steering (EPS), electronic power braking (EPB or IDB), transmission actuators, and BLDC pumps.

The AAS33001 includes on-chip 32 segment linearization. This can be used to calibrate out errors due to misalignment between the magnet and the sensor or imperfect magnetization of the target magnet. The AAS33001 supports customer integration into safety-critical applications.

The AAS33001 is available in a dual-die 24-pin eTSSOP and a single-die 14-pin TSSOP package. The packages are lead (Pb) free with 100% matte-tin leadframe plating. The 1 mm thin package reduces the minimum air gap between the CVH transducer and the target magnet. The AAS33001 device is pin-compatible with the A1333 to enable easy migration.
FEATURES AND BENEFITS (continued)

- High diagnostic coverage
  - On-chip diagnostics include logic built-in self-test (LBIST), signal path diagnostics, and watchdogs to support safety-critical (ASIL) applications
  - 4-bit CRC on SPI
- On-chip EEPROM for storing factory and customer calibration parameters
  - Single-bit error correction; dual-bit error detection, error correction control (ECC)
- Supports operating in harsh conditions required for automotive and industrial applications, including direct connection to 12 V battery
  - Operating temperature range from –40°C to 150°C
  - Operating supply voltage range from 3.7 to 18 V, absolute maximum of 28 V continuous
  - Can support ISO 7637-2 Pulse 5b up to 39 V
- Multiple output formats supported for ease of system integration
  - ABI and UVW interfaces provide high resolution and lowest latency angle information
  - PWM interface provides initial position for ABI/UVW interfaces
  - 10 MHz SPI for low latency angle and diagnostic information; enables multiple independent ICs to be connected to same bus
  - 3.3 V and 5 V SPI interfaces are supported
  - Output resolution on ABI and UVW are selectable
- Multiple programming/configuration formats supported
  - The system can be completely controlled and programmed over SPI, including EEPROM writes
  - For system with limited pins available, writing and reading can be performed over VCC and PWM pins. This allows configuring the EEPROM in production line for a device with only ABI/UVW and PWM pins connected.
  - 1 mm thin surface-mount TSSOP packages for both single and dual die versions to minimize air gap from target magnet to CVH transducer for improved field strength
  - Pin-compatible to single and dual die A1333 devices
  - Stacked dual die construction to improve channel-to-channel matching for systems that require redundant sensors

Table of Contents

Features and Benefits................................................. 1
Description.......................................................... 1
Packages .............................................................. 1
Simplified Block Diagram ......................................... 1
Selection Guide ....................................................... 2
Absolute Maximum Ratings ..................................... 2
Thermal Characteristics .......................................... 2
Pinout Diagrams and Terminal List ............................. 4
Operating Characteristics ......................................... 5
Functional Description ........................................... 8
  Overview .......................................................... 8
  Angle Measurement ............................................ 8
  System Level Timing .......................................... 8
  Power-Up ......................................................... 8
  PWM Output ..................................................... 8
  Linearization .................................................... 12
Incremental Output Interface (ABI) ........................... 13
Brushless DC Motor Commutation ......................... 18
ABI Behavior at Power-Up .................................... 20
Angle Hysteresis .................................................. 21
Device Programming Interface ............................... 22
  Interface Structure ........................................... 22
SPI Interface ....................................................... 23
Manchester Interface .......................................... 27
EEPROM and Shadow Memory Usage ...................... 33
  Enabling EEPROM Access ................................ 33
  EEPROM Write Lock .......................................... 33
  EEPROM Access and Write Lock Exceptions ............ 34
  Write Transaction ............................................ 34
  Read Transaction ............................................. 36
  Shadow Memory Read and Write Transactions .......... 40
  Serial Interface Table ....................................... 41
Primary Serial Interface Registers Reference .......... 42
EEPROM and Shadow Register Table ....................... 48
EEPROM Reference ............................................. 49
  Safety and Diagnostics ..................................... 56
  Alive Counter ................................................ 56
  Oscillator Watchdogs ....................................... 56
  Logic Built-In Self-Test (LBIST) ......................... 56
  CVH Self-Test ................................................. 56
Application Information ........................................ 57
  Magnetic Target Requirements ......................... 57
Typical SPI and ABI/UVW Applications .................. 58
I/O Structures .................................................. 60
Package Outline Drawings .................................... 61
AAS33001

Precision Angle Sensor IC with Incremental and Motor Commutation Outputs and On-Chip Linearization

SELECTION GUIDE*

<table>
<thead>
<tr>
<th>Part Number</th>
<th>System Die</th>
<th>Interface Voltage (V)</th>
<th>Package</th>
<th>Packing</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAS33001LLPBTR-DD</td>
<td>Dual</td>
<td>3.3</td>
<td>24-pin eTSSOP</td>
<td>4000 pieces per 13-inch reel</td>
</tr>
<tr>
<td>AAS33001LLEATR</td>
<td>Single</td>
<td>3.3</td>
<td>14-pin TSSOP</td>
<td>4000 pieces per 13-inch reel</td>
</tr>
<tr>
<td>AAS33001LLPBTR-5-DD</td>
<td>Dual</td>
<td>5.0</td>
<td>24-pin eTSSOP</td>
<td>4000 pieces per 13-inch reel</td>
</tr>
<tr>
<td>AAS33001LLEATR-5</td>
<td>Single</td>
<td>5.0</td>
<td>14-pin TSSOP</td>
<td>4000 pieces per 13-inch reel</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Notes</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Supply Voltage</td>
<td>V_CC</td>
<td>Sampling angles, respecting T_J(max)</td>
<td>28</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Supply Voltage</td>
<td>V_RCC</td>
<td>Not sampling angles</td>
<td>–18</td>
<td>V</td>
</tr>
<tr>
<td>All Other Pins Forward Voltage</td>
<td>V_IN</td>
<td></td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>All Other Pins Reverse Voltage</td>
<td>V_R</td>
<td></td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td>Operating Ambient Temperature</td>
<td>T_A</td>
<td>L range</td>
<td>–40 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_J(max)</td>
<td></td>
<td>170</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_stg</td>
<td></td>
<td>–65 to 170</td>
<td>°C</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS: May require derating at maximum conditions

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Test Conditions*</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package Thermal Resistance</td>
<td>R_θJA</td>
<td>LP-24 package with exposed thermal pad; measured on JEDEC JESD51-7 2s2p board</td>
<td>69</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LE-14 package; measured on JEDEC JESD51-7 2s2p board</td>
<td>82</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Pinout Diagrams

**LP 24-Pin eTSSOP**

<table>
<thead>
<tr>
<th>Pin</th>
<th>Pin Number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS_1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SCLK_1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MOSI_1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MISO_1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>B_1/V_1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>I_1/W_1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>GND_1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>PWM_1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>TEST_1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>VCC_1</td>
<td>10</td>
<td>SPI Master Input / Slave Output (die 1)</td>
</tr>
<tr>
<td>BYP_1</td>
<td>11</td>
<td>External bypass capacitor terminal for internal regulator (die 1)</td>
</tr>
</tbody>
</table>

**LE 14-Pin TSSOP**

<table>
<thead>
<tr>
<th>Pin</th>
<th>Pin Number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYP_1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>VCC_1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>TEST_1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GND</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>GND</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>GND</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PWM_1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>A_1/U_1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>B_2/V_2</td>
<td>9</td>
<td>SPI Chip Select terminal, active low input (die 2); also address selection for Manchester interface</td>
</tr>
<tr>
<td>GND</td>
<td>10</td>
<td>Device ground terminal</td>
</tr>
<tr>
<td>GND</td>
<td>11</td>
<td>Device ground terminal</td>
</tr>
<tr>
<td>GND</td>
<td>12</td>
<td>Device ground terminal</td>
</tr>
<tr>
<td>PWM_2</td>
<td>13</td>
<td>SPI Clock terminal input (die 2)</td>
</tr>
<tr>
<td>CS_1</td>
<td>14</td>
<td>SPI Chip Select terminal, active low input (die 1); also address selection for Manchester interface</td>
</tr>
<tr>
<td>TEST_2</td>
<td>15</td>
<td>Connect to ground (die 2)</td>
</tr>
</tbody>
</table>

Terminal List Table

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Pin Number</th>
<th>LE-14</th>
<th>LP-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWM_1</td>
<td>4</td>
<td>9</td>
<td>PWM Angle Output (die 1)</td>
</tr>
<tr>
<td>BYP_1</td>
<td>1</td>
<td>12</td>
<td>External bypass capacitor terminal for internal regulator (die 1)</td>
</tr>
<tr>
<td>A_1/U_1</td>
<td>12</td>
<td>5</td>
<td>Option 1: Quadrature A output signal signal (die 1)  Option 2: U (phase 1) output signal (die 1)</td>
</tr>
<tr>
<td>B_1/V_1</td>
<td>13</td>
<td>6</td>
<td>Option 1: Quadrature B output signal (die 1)  Option 2: V (phase 2) output signal (die 1)</td>
</tr>
<tr>
<td>VCC_1</td>
<td>2</td>
<td>11</td>
<td>Power supply</td>
</tr>
<tr>
<td>I_1/W_1</td>
<td>14</td>
<td>7</td>
<td>Option 1: Quadrature I (index) output signal (die 1)  Option 2: W (phase 3) output signal (die 1)</td>
</tr>
<tr>
<td>MOSI_2</td>
<td>–</td>
<td>16</td>
<td>SPI Master Input / Slave Output (die 2)</td>
</tr>
<tr>
<td>MOSI_2</td>
<td>–</td>
<td>15</td>
<td>SPI Master Output / Slave Input (die 2); also address selection for Manchester interface</td>
</tr>
<tr>
<td>CS_2</td>
<td>–</td>
<td>13</td>
<td>SPI Chip Select terminal, active low input (die 2); also address selection for Manchester interface</td>
</tr>
<tr>
<td>GND</td>
<td>5, 6, 7</td>
<td>–</td>
<td>Device ground terminal</td>
</tr>
<tr>
<td>GND_1</td>
<td>–</td>
<td>8</td>
<td>Device ground terminal</td>
</tr>
<tr>
<td>GND_2</td>
<td>–</td>
<td>20</td>
<td>Device ground terminal</td>
</tr>
<tr>
<td>PWM_2</td>
<td>–</td>
<td>21</td>
<td>PWM Angle Output (die 2)</td>
</tr>
<tr>
<td>BYP_2</td>
<td>–</td>
<td>24</td>
<td>External bypass capacitor terminal for internal regulator (die 2)</td>
</tr>
<tr>
<td>A_2/U_2</td>
<td>–</td>
<td>17</td>
<td>Option 1: Quadrature A output signal (die 2)  Option 2: U (phase 1) output signal (die 2)</td>
</tr>
<tr>
<td>B_2/V_2</td>
<td>–</td>
<td>18</td>
<td>Option 1: Quadrature B output signal (die 2)  Option 2: V (phase 2) output signal (die 2)</td>
</tr>
<tr>
<td>I_2/W_2</td>
<td>–</td>
<td>19</td>
<td>Option 1: Quadrature I (index) output signal (die 1)  Option 2: W (phase 3) output signal (die 1)</td>
</tr>
<tr>
<td>MOSI_1</td>
<td>11</td>
<td>4</td>
<td>SPI Master Input / Slave Output (die 1)</td>
</tr>
<tr>
<td>SCLK_1</td>
<td>9</td>
<td>2</td>
<td>SPI Clock terminal input (die 1)</td>
</tr>
<tr>
<td>MOSI_1</td>
<td>10</td>
<td>3</td>
<td>SPI Master Output / Slave Input (die 1); also address selection for Manchester interface</td>
</tr>
<tr>
<td>CS_1</td>
<td>8</td>
<td>1</td>
<td>SPI Chip Select terminal, active low input (die 1); also address selection for Manchester interface</td>
</tr>
<tr>
<td>TEST_1</td>
<td>3</td>
<td>10</td>
<td>Connect to ground (die 1)</td>
</tr>
<tr>
<td>TEST_2</td>
<td>–</td>
<td>22</td>
<td>Connect to ground (die 2)</td>
</tr>
<tr>
<td>PAD</td>
<td>–</td>
<td>PAD</td>
<td>Exposed pad for thermal dissipation</td>
</tr>
</tbody>
</table>
### OPERATING CHARACTERISTICS:

Valid over the full operating voltage and ambient temperature ranges, unless otherwise noted.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ. (^{[1]})</th>
<th>Max.</th>
<th>Unit (^{[2]})</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ELECTRICAL CHARACTERISTICS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>V(_{CC})</td>
<td>For single die</td>
<td>3.7</td>
<td>–</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td>Supply Current</td>
<td>I(_{CC} )</td>
<td></td>
<td>–</td>
<td>15</td>
<td>19</td>
<td>mA</td>
</tr>
<tr>
<td>Power-On Reset Threshold Voltage (^{[3]})</td>
<td>V(_{PORH})</td>
<td>V(<em>{CC}) rising, dV/dt = 1 V/ms, T(</em>{A}) = 25°C</td>
<td>–</td>
<td>–</td>
<td>3.7</td>
<td>V</td>
</tr>
<tr>
<td>Power-On Low Voltage</td>
<td>I(_{PORL})</td>
<td>V(<em>{CC}) falling, dV/dt = 1 V/ms, T(</em>{A}) = 25°C</td>
<td>3.3</td>
<td>–</td>
<td>–</td>
<td>mA</td>
</tr>
<tr>
<td>Undervoltage Warning Level (^{[4]})</td>
<td>V(_{UV})</td>
<td>T(_{A}) = –40°C to 150°C</td>
<td>3.7</td>
<td>3.82</td>
<td>4.0</td>
<td>V</td>
</tr>
<tr>
<td>Supply Zener Clamp Voltage</td>
<td>I(_{ZSUP})</td>
<td>V(<em>{CC}) = I(</em>{CC} ) + 3 mA, T(_{A}) = 25°C</td>
<td>26.5</td>
<td>–</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Battery Current</td>
<td>I(_{RCC})</td>
<td>V(<em>{RCC}) = –18 V, T(</em>{A}) = 25°C</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>mA</td>
</tr>
<tr>
<td>Bypass Pin Output Voltage (^{[5]})</td>
<td>V(_{BYP})</td>
<td>T(<em>{A}) = 25°C, C(</em>{BYP}) = 0.1 µF, 3.3 V interface</td>
<td>2.97</td>
<td>3.3</td>
<td>3.63</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.0</td>
<td>5.0</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>SPI AND ABI/UVW INTERFACE SPECIFICATIONS</strong> (for 3.3 V interface)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital Input High Voltage</td>
<td>V(_{IH})</td>
<td>MOSI, SCLK, Ĉ(_{S}) pins</td>
<td>2.8</td>
<td>–</td>
<td>3.63</td>
<td>V</td>
</tr>
<tr>
<td>Digital Input Low Voltage</td>
<td>V(_{IL})</td>
<td>MOSI, SCLK, Ĉ(_{S}) pins</td>
<td>–</td>
<td>–</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td>Output High Voltage</td>
<td>V(_{OH})</td>
<td>MISO and ABI/UVW pins, C(<em>{L}) = 20 pF, T(</em>{A}) = 25°C</td>
<td>2.93</td>
<td>3.3</td>
<td>3.63</td>
<td>V</td>
</tr>
<tr>
<td>Output Low Voltage</td>
<td>V(_{OL})</td>
<td>MISO and ABI/UVW pins, C(<em>{L}) = 20 pF, T(</em>{A}) = 25°C</td>
<td>–</td>
<td>0.3</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td><strong>SPI AND ABI/UVW INTERFACE SPECIFICATIONS</strong> (for 5.0 V interface)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital Input High Voltage</td>
<td>V(_{IH})</td>
<td>MOSI, SCLK, Ĉ(_{S}) pins</td>
<td>3.75</td>
<td>–</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Digital Input Low Voltage</td>
<td>V(_{IL})</td>
<td>MOSI, SCLK, Ĉ(_{S}) pins</td>
<td>–</td>
<td>–</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td>Output High Voltage</td>
<td>V(_{OH})</td>
<td>MISO and ABI/UVW pins, C(<em>{L}) = 20 pF, T(</em>{A}) = 25°C, V(_{CC}) ≥ 5.0 V</td>
<td>4.0</td>
<td>5.0</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Output Low Voltage</td>
<td>V(_{OL})</td>
<td>MISO and ABI/UVW pins, C(<em>{L}) = 20 pF, T(</em>{A}) = 25°C</td>
<td>–</td>
<td>0.3</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td><strong>SPI INTERFACE SPECIFICATIONS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPI Clock Frequency (^{[6]})</td>
<td>f(_{SCLK})</td>
<td>MISOx pins, C(_{L}) = 20 pF</td>
<td>0.1</td>
<td>–</td>
<td>10</td>
<td>MHz</td>
</tr>
<tr>
<td>SPI Clock Duty Cycle (^{[6]})</td>
<td>D(_{SCLK})</td>
<td>SPI(_{CLKDC})</td>
<td>40</td>
<td>–</td>
<td>60</td>
<td>%</td>
</tr>
<tr>
<td>SPI Frame Rate (^{[6]})</td>
<td>f(_{SPI})</td>
<td></td>
<td>5.8</td>
<td>–</td>
<td>588</td>
<td>kHz</td>
</tr>
<tr>
<td>Chip Select to First SCLK Edge (^{[6]})</td>
<td>t(_{CS})</td>
<td>Time from Ĉ(_{S}) going low to SCLKx falling edge</td>
<td>50</td>
<td>–</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>Chip Select Inactive Time</td>
<td>t(_{CSH})</td>
<td>Time in which Ĉ(_{S}) is held high before the next frame</td>
<td>150</td>
<td>–</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>Data Output Valid Time (^{[6]})</td>
<td>t(_{DAV})</td>
<td>Data output valid after SCLKx falling edge</td>
<td>–</td>
<td>–</td>
<td>50</td>
<td>ns</td>
</tr>
<tr>
<td>MOSI Setup Time (^{[6]})</td>
<td>t(_{SU})</td>
<td>Input setup time before SCLKx rising edge</td>
<td>25</td>
<td>–</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>MOSI Hold Time (^{[6]})</td>
<td>t(_{SH})</td>
<td>Input hold time after SCLKx rising edge</td>
<td>50</td>
<td>–</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>SCLK to CS Hold Time (^{[6]})</td>
<td>t(_{CHD})</td>
<td>Hold SCLKx high time before Ĉ(_{S}) rising edge</td>
<td>5</td>
<td>–</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>Load Capacitance (^{[6]})</td>
<td>C(_{L})</td>
<td>Loading on digital output (MISOx) pin</td>
<td>–</td>
<td>–</td>
<td>20</td>
<td>pF</td>
</tr>
</tbody>
</table>

Continued on the next page...
OPERATING CHARACTERISTICS (continued): Valid over the full operating voltage and ambient temperature ranges, unless otherwise noted

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>PWM INTERFACE SPECIFICATIONS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWM Carrier Frequency</td>
<td>$f_{PWM}$</td>
<td>PWM Frequency Min Setting, $T_a$ in specification</td>
<td>–</td>
<td>98</td>
<td>–</td>
<td>Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PWM Programmable Options (number of steps)</td>
<td>–</td>
<td>128</td>
<td>–</td>
<td>steps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PWM Frequency Max Setting, $T_a$ in specification</td>
<td>–</td>
<td>3.125</td>
<td>–</td>
<td>kHz</td>
</tr>
<tr>
<td>PWM Output Low Clamp</td>
<td>$D_{PWM(min)}$</td>
<td>Corresponding to digital angle of 0x000</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>%</td>
</tr>
<tr>
<td>PWM Output High Clamp</td>
<td>$D_{PWM(max)}$</td>
<td>Corresponding to digital angle of 0xFFF</td>
<td>–</td>
<td>95</td>
<td>–</td>
<td>%</td>
</tr>
<tr>
<td><strong>INCREMENTAL OUTPUT SPECIFICATIONS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABI and UVW Output Angular Hysteresis</td>
<td>$h_{SANG}$</td>
<td>Programmable</td>
<td>0</td>
<td>–</td>
<td>1.38</td>
<td>degrees</td>
</tr>
<tr>
<td><strong>MANCHESTER INTERFACE SPECIFICATIONS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manchester High Voltage</td>
<td>$V_{MAN(H)}$</td>
<td>Applied to VCC line</td>
<td>7.3</td>
<td>8</td>
<td>$V_{CC(max)}$</td>
<td>V</td>
</tr>
<tr>
<td>Manchester Low Voltage</td>
<td>$V_{MAN(L)}$</td>
<td>Applied to VCC line</td>
<td>$V_{CC(min)}$</td>
<td>5</td>
<td>5.7</td>
<td>V</td>
</tr>
<tr>
<td>Manchester Bitrate</td>
<td>$f_{MAN}$</td>
<td>Line state changes once or twice per bit; maximum speed is usually limited by VCC line capacitance</td>
<td>2.2</td>
<td>–</td>
<td>100</td>
<td>kbit/s</td>
</tr>
<tr>
<td><strong>BUILT-IN SELF TEST</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic BIST Time</td>
<td>$t_{LBIST}$</td>
<td>Configurable to run on power-up or on user request</td>
<td>–</td>
<td>30</td>
<td>–</td>
<td>ms</td>
</tr>
<tr>
<td>Circular Vertical Hall Self-Test Time</td>
<td>$t_{CVHST}$</td>
<td>Configurable to run on power-up or on user request</td>
<td>–</td>
<td>30</td>
<td>–</td>
<td>ms</td>
</tr>
<tr>
<td><strong>MAGNETIC CHARACTERISTICS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic Field</td>
<td>B</td>
<td>Range of input field</td>
<td>–</td>
<td>–</td>
<td>1200</td>
<td>G</td>
</tr>
</tbody>
</table>

Continued on the next page…
**OPERATING CHARACTERISTICS (continued):** Valid over the full operating voltage and ambient temperature ranges, unless otherwise noted

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ANGLE CHARACTERISTICS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>RES\textsubscript{ANGLE}</td>
<td>Both 12 and 15-bit angle values are available via SPI</td>
<td>–</td>
<td>12/15</td>
<td>–</td>
<td>bit</td>
</tr>
<tr>
<td>Angle Refresh Rate</td>
<td>t\textsubscript{ANG}</td>
<td>No averaging</td>
<td>–</td>
<td>1.0</td>
<td>–</td>
<td>µs</td>
</tr>
<tr>
<td>Response Time</td>
<td>t\textsubscript{RESPONSE}</td>
<td>Angular latency; valid for ABI or UVW interface</td>
<td>–</td>
<td>10</td>
<td>–</td>
<td>µs</td>
</tr>
<tr>
<td>Angle Error</td>
<td>ERR\textsubscript{ANG}</td>
<td>(T_A = 25^\circ C, ) ideal magnet alignment, (B = 300\ G, ) target rpm = 0</td>
<td>–1</td>
<td>±0.4</td>
<td>1</td>
<td>degrees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_A = 150^\circ C, ) ideal magnet alignment, (B = 300\ G, ) target rpm = 0</td>
<td>–1.3</td>
<td>±0.7</td>
<td>1.3</td>
<td>degrees</td>
</tr>
<tr>
<td>Temperature Drift</td>
<td>ANGLE\textsubscript{DRIFT}</td>
<td>(T_A = 150^\circ C, B = 300\ G, ) angle change from 25°C</td>
<td>–1.4</td>
<td>–</td>
<td>1.4</td>
<td>degrees</td>
</tr>
<tr>
<td>Angle Noise</td>
<td>N\textsubscript{ANG}</td>
<td>(T_A = 25^\circ C, B = 300\ G, ) no internal filtering, target rpm = 0, 3 sigma noise</td>
<td>–</td>
<td>±0.22</td>
<td>–</td>
<td>degrees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_A = 150^\circ C, B = 300\ G, ) no internal filtering, target rpm = 0, 3 sigma noise</td>
<td>–</td>
<td>±0.28</td>
<td>–</td>
<td>degrees</td>
</tr>
<tr>
<td>Effective Resolution</td>
<td>ANGLE\textsubscript{Drift Life}</td>
<td>(B = 300\ G, T_A = 25^\circ C) following AEC-Q100 qualification testing</td>
<td>–</td>
<td>0.5</td>
<td>–</td>
<td>degrees</td>
</tr>
</tbody>
</table>

1. Typical data is at \(T_A = 25^\circ C\) and \(V_{CC} = 5\) V, and it is for design estimates only.
2. 1 G (gauss) = 0.1 mT (millitesla).
3. At power-on, a die will not respond to commands until \(V_{CC}\) rises above \(V_{PORHI}\). After that, the die will perform and respond normally until \(V_{CC}\) drops below \(V_{PORLOW}\).
4. During the power-on phase, the AAS33001 SPI transactions are not guaranteed.
5. The parameter is not guaranteed at final test. Determined by design.
6. The output voltage and current specifications are to aid in PCB design. The pin is not intended to drive any external circuitry. The specifications indicate the peak capacitor charging and discharging currents to be expected during normal operation.
7. RES\textsubscript{ANGLE} represents the number of bits of data available for reading from the die registers.
8. The rate at which a new angle reading will be ready.
9. Error value as measured at Allegro final test before any on-chip linearization is applied. Actual raw angle error performance in application can vary with multiple factors (e.g. magnet to sensor alignment, etc). Using the on-chip linearization features of the AAS33001 can significantly reduce these errors.
10. Error and noise values are with no further signal processing. Angle Noise can be reduced with internal filtering and slower Angle Refresh Rate value.
11. This value represents 3-sigma or three times the standard deviation of the measured samples.
12. Effective Resolution is calculated using the formula below:

\[
\log_2(360) - \log_2 \left( \frac{1}{n} \sum_{i=1}^{n} \sigma_i \right)
\]

where \(\sigma\) is the Standard Deviation based on thirty measurements taken at each of the 32 angular positions, \(I = 11.25, 22.5, \ldots 360\).
13. Maximum observed angle drift following AEC-Q100 stress was 1.4 degrees.
FUNCTIONAL DESCRIPTION

Overview
The AAS33001 is a rotary position Hall-sensor-based device. It incorporates one or two electrically independent Hall sensor dies in the same surface-mount package to provide solid-state consistency and reliability, and to support a wide variety of automotive applications. Each Hall-sensor-based die measures the direction of the magnetic field vector through 360° in the x-y plane (parallel to the branded face of the device) and computes an angle measurement based on the actual physical reading, as well as any internal parameters that have been set by the user. The output of each die is used by the host microcontroller to provide a single channel of target data.

This device is an advanced, programmable system-on-chip (SoC). Each integrated circuit includes a circular vertical Hall (CVH) analog front end, a high-speed sampling A-to-D converter, digital filtering, digital signal processing, a digital control SPI interface, motor commutation outputs (UVW), and encoder outputs (A, B, I).

Advanced offset, gain, and linearization adjustment options are available in the AAS33001. These options can be configured in onboard EEPROM, providing a wide range of sensing solutions in the same device.

Angle Measurement
The AAS33001 can monitor the angular position of a rotating magnet at speeds ranging from 0 to more than 15,000 rpm. The AAS33001 has a typical output refresh rate of 1 µs.

Readout in SPI is possible with 12-bit resolution, with error flags included in the same word, or in 15-bit resolution without included error flags. Reading out the angle takes 16 SPI clock cycles. See SPI Interface section for details on SPI usage.

PWM output is always resolved to a 12-bit angle resolution.

ABI/UVW resolution can be set to the level desired by the customer.

The sensor readout is processed and linearized in various steps. These are detailed in Figure 3.

System Level Timing
Internal registers are updated with a new angle value every $t_{ANG}$ (if an angle change has occurred). The sensor readout is processed and linearized in various steps. The streaming protocols ABI and UVW, which require no external trigger, will update every $t_{ANG}$ (if an angle change has occurred). SPI, which is asynchronously clocked, results in a varying latency depending on sampling frequency and SCLK speed. The values which are presented to the user are copied from the data path to the output registers between 0 and 125 ns after the SPI falling chip select edge. The first bit never contains data. If the SPI clock is 10 MHz, the data will be clocked out after 1.6 µs. As the data were sampled in at the first clock edge at an age of maximum $t_{RESPONSE}$, their age after the SPI transaction has finished will be between 1.6 and 1.6 + $t_{RESPONSE}$ µs.

Figure 2 shows the update rate and the signal delay of the different angle output paths depending on the sensor settings.

The value of the “angle_zcd” register is updated approximately every 32 µs. The value of the register “gauss” is update approximately every 128 µs.

Power-Up
Upon applying power to the AAS33001, the device automatically runs through an initialization routine. The purpose of this initialization is to ensure that the device comes up in the same predictable operating condition every power cycle. This initialization routine takes a finite amount of time to complete, which is referred to as Power-On Time, $t_{PO}$. Regardless of the state of the device before a power cycle, the device will repower with EEPROM shadow bits copied from the EEPROM anew, and serial registers in their default states. For example, on every power-up, the device will power with the “zero_offset” that was stored in the EEPROM. The extended write access field “write_adr” will be set back to its default value, zero.

PWM Output
The AAS33001 provides a pulse-width-modulated output with duty cycle proportional to measured angle. The PWM duty cycle is clamped at 5% and 95% DC for diagnostic purposes. 5% DC corresponds to 0 degrees of angle; 95% DC corresponds to 360° of angle. The 0% and 100% (pulled low and pulled high) states are reserved for error condition notifications. The rising edges of the output are always at the same points in time, while the falling edge moves from 5% to 95% over angles of 0 to 360 degrees.

In case of errors, the setting “peo” = 1 will make errors affect the PWM pin. The setting “pes” = 0 will tristate the PWM pin, while setting “pes” = 1, the output frequency will be halved, and the outputs will be fixed to the levels in Table 1.
Table 1: PWM Output Errors

<table>
<thead>
<tr>
<th>Error</th>
<th>Priority</th>
<th>Duty Cycle %</th>
<th>Description / Persistence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WDE</td>
<td>1 (highest)</td>
<td>5</td>
<td>Watchdog error. Permanent error until restart.</td>
</tr>
<tr>
<td>OFE</td>
<td>2</td>
<td>10.625</td>
<td>Oscillator frequency watchdog error.</td>
</tr>
<tr>
<td>ZIE</td>
<td>5</td>
<td>27.5</td>
<td>Zero-crossing integrity error. Persists as long as the issue exists.</td>
</tr>
<tr>
<td>AVG</td>
<td>6</td>
<td>33.125</td>
<td>Angle averaging error. Outputs once then clears.</td>
</tr>
<tr>
<td>UV</td>
<td>7</td>
<td>38.75</td>
<td>Undervoltage (UVA and/or UVCC dependent on serial error masks). Persists until no unmasked undervoltage.</td>
</tr>
<tr>
<td>MSL</td>
<td>8</td>
<td>44.375</td>
<td>Persists until field strength higher than low threshold.</td>
</tr>
<tr>
<td>ESE</td>
<td>9</td>
<td>50</td>
<td>EEPROM correctable error. Outputs once, then clears.</td>
</tr>
<tr>
<td>SAT</td>
<td>10</td>
<td>55.625</td>
<td>Saturation error. Persists as long as the issue exists.</td>
</tr>
<tr>
<td>MSH</td>
<td>11</td>
<td>61.25</td>
<td>Persists until field strength lower than high threshold.</td>
</tr>
<tr>
<td>TR</td>
<td>12 (lowest)</td>
<td>66.875</td>
<td>Persists until temperature within range.</td>
</tr>
</tbody>
</table>

The duty cycle of the pin can be configured using the “pwm_band” and the “pwm_freq” fields, yielding the frequencies shown in Table 2.

Table 2: PWM Frequency Table (Hz)

<table>
<thead>
<tr>
<th>“pwm_band”</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
</tbody>
</table>
Precision Angle Sensor IC with Incremental and Motor Commutation Outputs and On-Chip Linearization

Latency: 10 + (2^{rate} – 1) µs
Rate: 1 µs \times 2^{rate}

Latency: 10 µs
Rate: 1 µs

Latency ≤ 1 PWM cycles of (98...3125 Hz)
Rate (98...3125 Hz)

Latency = f_{PWM^-1} + 10 µs + (2^{rate} – 1) µs
Rate = f_{PWM^-1}
New data rate = max of [f_{PWM^-1} and 2^{rate} µs]

Latency ≤ 10µs + 2^{rate} µs + 16/f_{SPI}
Rate = 16/f_{SPI}
New data rate = max of [16/f_{SPI} and 2^{rate} µs]

Latency: 10 + (2^{rate} – 1) µs
Rate: 1 µs \times 2^{rate}

Latency: 10 µs
Rate: 1 µs

Latency ≤ 10µs + 2^{rate} µs + 16/f_{SPI}
Rate = 16/f_{SPI}
New data rate = max of [16/f_{SPI} and 2^{rate} µs]

Figure 2: Signal Latency and Update Rates
Figure 3: Angle data flow chart.
Text in quotes (""") denotes registers that affect their containing block.
Linearization

The AAS33001 contains linearization functionality. Linearization allows for conversion of the initially sensor-measured magnetic field data into customer-desired linear output. This can be used to correct minor imperfections in the encoder signal, or to allow motor commutation in side-shaft measurement setups.

Linearization converts the electrical angles (the angle as measured by the sensor front end) into mechanical angles (the actual angle of the encoder signal).

To use the linearization feature, it is most convenient to use the Allegro AAS33001 Samples Programmer Graphical User Interface (GUI). It allows the user to measure points along the mechanical rotation, calculate all parameters that need to be written into the sensor, and writes these values into the sensor. To use this function, the user must be able to read and control the mechanical angle.

The sensor performs linearization by taking the measured electrical angles and, depending on the angle measured, subtracting a linearization coefficient stored in EEPROM. There are 32 of these linearization coefficients in the EEPROM. The angle value at a sensor angle reading of 0.00, 11.25, 22.50, … 348.75 electrical degrees will be modified by the values in EEPROM fields LIN0, LIN1, LIN2, … LIN31. The EEPROM LIN values are subtracted from the electrical sensor angles, as shown in Table 3.

The LIN fields are 12-bit signed values. Each LIN coefficient has a range of –2048…+2047 LSB that corresponds to a correction of the electrical angle by +22.50…–22.49 degrees (EEPROM field “ls” = 0) or by +45.00…–44.98 degrees (EEPROM field “ls” = 1). When the electrical angle is between of two of the linearization points, the sensor calculates the appropriate correction value for this angle by linear interpolation between the two coefficients next to the value. For example, if the sensor measures an angle of 5.625°, the output will be 5.625 – (LIN0 + LIN1) / 2.

Figure 4 is an example showing a nonlinear curve that is corrected by the sensor. In this example, the values of LIN0, LIN1, LIN2, and LIN3 are negative numbers, while LIN4 is a positive number. The linearized output angle in the example is close to the mechanical angle, but not perfect. This was done on purpose to show a more realistic example.

The output delay of the AAS33001 is not affected by enabling or disabling linearization. If linearization is disabled, the EEPROM LIN fields can be used for other customer purposes.

### Table 3: Linearization Coefficients

<table>
<thead>
<tr>
<th>Electrical angle (°) measured by sensor</th>
<th>Correction value Written in EEPROM</th>
<th>Output angle Visible on sensor output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>LIN0</td>
<td>Output = 0.00 – LIN0</td>
</tr>
<tr>
<td>11.25</td>
<td>LIN1</td>
<td>Output = 11.25 – LIN1</td>
</tr>
<tr>
<td>22.50</td>
<td>LIN2</td>
<td>Output = 22.50 – LIN2</td>
</tr>
<tr>
<td>33.75</td>
<td>LIN3</td>
<td>Output = 33.75 – LIN3</td>
</tr>
<tr>
<td>45.00</td>
<td>LIN4</td>
<td>Output = 45.00 – LIN4</td>
</tr>
<tr>
<td>56.25</td>
<td>LIN5</td>
<td>Output = 56.25 – LIN5</td>
</tr>
<tr>
<td>67.50</td>
<td>LIN6</td>
<td>Output = 67.50 – LIN6</td>
</tr>
<tr>
<td>78.75</td>
<td>LIN7</td>
<td>Output = 78.75 – LIN7</td>
</tr>
<tr>
<td>90.00</td>
<td>LIN8</td>
<td>Output = 90.00 – LIN8</td>
</tr>
<tr>
<td>101.25</td>
<td>LIN9</td>
<td>Output = 101.25 – LIN9</td>
</tr>
<tr>
<td>112.50</td>
<td>LIN10</td>
<td>Output = 112.50 – LIN10</td>
</tr>
<tr>
<td>123.75</td>
<td>LIN11</td>
<td>Output = 123.75 – LIN11</td>
</tr>
<tr>
<td>135.00</td>
<td>LIN12</td>
<td>Output = 135.00 – LIN12</td>
</tr>
<tr>
<td>146.25</td>
<td>LIN13</td>
<td>Output = 146.25 – LIN13</td>
</tr>
<tr>
<td>157.50</td>
<td>LIN14</td>
<td>Output = 157.50 – LIN14</td>
</tr>
<tr>
<td>168.75</td>
<td>LIN15</td>
<td>Output = 168.75 – LIN15</td>
</tr>
<tr>
<td>180.00</td>
<td>LIN16</td>
<td>Output = 180.00 – LIN16</td>
</tr>
<tr>
<td>191.25</td>
<td>LIN17</td>
<td>Output = 191.25 – LIN17</td>
</tr>
<tr>
<td>202.50</td>
<td>LIN18</td>
<td>Output = 202.50 – LIN18</td>
</tr>
<tr>
<td>213.75</td>
<td>LIN19</td>
<td>Output = 213.75 – LIN19</td>
</tr>
<tr>
<td>225.00</td>
<td>LIN20</td>
<td>Output = 225.00 – LIN20</td>
</tr>
<tr>
<td>236.25</td>
<td>LIN21</td>
<td>Output = 236.25 – LIN21</td>
</tr>
<tr>
<td>247.50</td>
<td>LIN22</td>
<td>Output = 247.50 – LIN22</td>
</tr>
<tr>
<td>258.75</td>
<td>LIN23</td>
<td>Output = 258.75 – LIN23</td>
</tr>
<tr>
<td>270.00</td>
<td>LIN24</td>
<td>Output = 270.00 – LIN24</td>
</tr>
<tr>
<td>281.25</td>
<td>LIN25</td>
<td>Output = 281.25 – LIN25</td>
</tr>
<tr>
<td>292.50</td>
<td>LIN26</td>
<td>Output = 292.50 – LIN26</td>
</tr>
<tr>
<td>303.75</td>
<td>LIN27</td>
<td>Output = 303.75 – LIN27</td>
</tr>
<tr>
<td>315.00</td>
<td>LIN28</td>
<td>Output = 315.00 – LIN28</td>
</tr>
<tr>
<td>326.25</td>
<td>LIN29</td>
<td>Output = 326.25 – LIN29</td>
</tr>
<tr>
<td>337.50</td>
<td>LIN30</td>
<td>Output = 337.50 – LIN30</td>
</tr>
<tr>
<td>348.75</td>
<td>LIN31</td>
<td>Output = 348.75 – LIN31</td>
</tr>
</tbody>
</table>
Precision Angle Sensor IC with Incremental and Motor Commutation Outputs and On-Chip Linearization

AAS33001

Incremental Output Interface (ABI)

The AAS33001 offers an incremental output mode in the form of quadrature A/B and Index outputs to emulate an optical or mechanical encoder. The A and B signals toggle with a 50% duty cycle (relative to angular distance, not necessarily time) at a frequency of 2N cycles per magnetic revolution, giving a cycle resolution of \( \frac{360}{2^N} \) degrees per cycle. B is offset from A by \( \frac{1}{4} \) of a cycle period. The “I” signal is an index pulse that occurs once per revolution to mark the zero (0) angle position. One revolution is shown in Figure 5.

Since A and B are offset by \( \frac{1}{4} \) of a cycle, they are in quadrature and together have four unique states per cycle. Each state represents \( R = \frac{360}{(4 \times 2^N)} \) degrees of the full revolution. This angular distance is the quadrature resolution of the encoder. The order in which the states change, or the order of the edge transitions from A to B, allow the direction of rotation to be determined. If a given B edge (rising/falling) precedes the following A edge, the angle is increasing from the perspective of the electrical (sensor) angle and the angle position should be incremented by the quadrature resolution (R) at each state transition. Conversely, if a given A edge precedes the following B edge, the angle is decreasing from the perspective of the electrical (sensor) angle and the angle position should be decremented by the quadrature resolution (R) at each state transition. The angle position accumulator wraps each revolution back to 0. The quadrature states are designated as Q1 through Q4 in the following diagrams, and are defined as follows:

<table>
<thead>
<tr>
<th>State Name</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Q3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Q4</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Note that the A/B progression is a grey coding sequence where only one signal transitions at a time. The state progression must be as follows to be valid:

Increasing angle: Q1 → Q2 → Q3 → Q4 → Q1 → Q2 → Q3 → Q4
Decreasing angle: Q4 → Q3 → Q2 → Q1 → Q4 → Q3 → Q2 → Q1

The duration of one cycle is referred to as 360 electrical degrees, or 360e. One half of a cycle is therefore 180e and one quarter of a cycle (one quadrature state, or R degrees) is 90e. This is the...
terminology used to express variance from perfect signal behavior. Ideally, the A and B cycle would be as shown below for a constant velocity (see Figure 6).

In reality, the edge rate of the A and B signals, and the switching threshold of the receiver I/Os, will affect the quadrature periods (see Figure 7).

Figure 6: Electrical Cycle

Figure 7: Electrical Cycle
RESOLUTION

The AAS33001 supports the following ABI output resolutions. This is set via the resolution_pairs field in EEPROM.

<table>
<thead>
<tr>
<th>EEPROM Resolution Field</th>
<th>Cycle Resolution (Bits = N)</th>
<th>Quadrature Resolution (Bits = 4 × N)</th>
<th>Cycles per Revolution (A or B)</th>
<th>Quadrature States per Revolution</th>
<th>Cycle Resolution (Degrees)</th>
<th>Quadrature Resolution (R) (Degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Factory Use Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Factory Use Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Factory Use Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>13</td>
<td>2048</td>
<td>8192</td>
<td>0.176</td>
<td>0.044</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>12</td>
<td>1024</td>
<td>4096</td>
<td>0.352</td>
<td>0.088</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>11</td>
<td>512</td>
<td>2048</td>
<td>0.703</td>
<td>0.176</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>10</td>
<td>256</td>
<td>1024</td>
<td>1.406</td>
<td>0.352</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>9</td>
<td>128</td>
<td>512</td>
<td>2.813</td>
<td>0.703</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>8</td>
<td>64</td>
<td>256</td>
<td>5.625</td>
<td>1.406</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>7</td>
<td>32</td>
<td>128</td>
<td>11.250</td>
<td>2.813</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>6</td>
<td>16</td>
<td>64</td>
<td>22.500</td>
<td>5.625</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>32</td>
<td>45.000</td>
<td>11.250</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>16</td>
<td>90.000</td>
<td>22.5</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>180.0</td>
<td>45.0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>360.0</td>
<td>90.0</td>
</tr>
<tr>
<td>15</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>
SLEW RATE LIMITING

Slew rate limiting is enabled when the ABI.abi_slew_time field is non-zero. This option separates the sample update rate from the ABI output rate, and can be used to control two circumstances:

- The angle sample does not monotonically increase or decrease at the quadrature resolution, thereby “skipping” one or more quadrature states. In this case, the slew rate limiting logic transitions the ABI signals in the required valid sequence, at the slew rate, until the ABI output “catches up” with the angle samples, at which point the normal sample rate output resumes. This skipping will most likely occur either at very low velocities, if the noise is high, or at very high velocities when the angle changes more than the quadrature resolution in one angle sample period.

- The ABI receiver at the host end cannot reliably detect edge transitions that are spaced at the sample rate of 1 µs. The slew limit time can be set greater than the nominal angle sample update period, providing the velocity of the angle rotation would not on average require ABI transitions greater than the angle sample rate.

![Diagram of Slew Rate Limiting](image)

Figure 8: Slew Rate Limiting
INDEX PULSE

The index pulse I (or Z in some descriptions) marks the absolute zero (0) position of the encoder. Under rotation, this allows the receiver to synchronize to a known mechanical/magnetic position, and then use the incremental A/B signals to keep track of the absolute position. To support a range of ABI receivers, the ‘I’ pulse has four widths, defined in Figure 9.

A
B
I/Z Mode 0
I/Z Mode 1
I/Z Mode 2
I/Z Mode 3

A=-2R
Q3
A=-R
Q4
A=0
Q1
A=+R
Q2

True Zero to 360 Discontinuity

Figure 9: Index Pulse
Brushless DC Motor Output (UVW)

The AAS33001 offers U, V, and W signals for stator commutation of brushless DC (BLDC) motors. The device is mode-selectable for 1 to 16 pole-pairs. The BLDC signals (U, V, and W) are generated based on the quantity of pole-pairs and on angle information from the angle sensor. The U, V, and W outputs switch when the measured mechanical angle crosses the value where a change should occur. If hysteresis is used, then the output update method is different. The output behavior when hysteresis is enabled is described in the “Angle Hysteresis” section. Figure 10 and Figure 11 below show the UVW waveforms for three and five pole-pair BLDC motors.

Figure 10: U, V, W Outputs for Three Pole-Pair BLDC Motor

Figure 11: U, V, W Outputs for Five Pole-Pair BLDC Motor
### Precision Angle Sensor IC with Incremental and Motor Commutation Outputs and On-Chip Linearization

<table>
<thead>
<tr>
<th>Quantity of Poles (&quot;resolution_pairs&quot;)</th>
<th>Quantity of Pole-Pairs</th>
<th>Conversion from Electrical Degrees to Mechanical Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Electrical (°) Mechanical (°)</td>
</tr>
<tr>
<td>0000</td>
<td>1</td>
<td>90 90</td>
</tr>
<tr>
<td>0001</td>
<td>2</td>
<td>90 45</td>
</tr>
<tr>
<td>0010</td>
<td>3</td>
<td>90 30</td>
</tr>
<tr>
<td>0011</td>
<td>4</td>
<td>90 22.5</td>
</tr>
<tr>
<td>0100</td>
<td>5</td>
<td>90 18</td>
</tr>
<tr>
<td>0101</td>
<td>6</td>
<td>90 15</td>
</tr>
<tr>
<td>0110</td>
<td>7</td>
<td>90 12.857...</td>
</tr>
<tr>
<td>0111</td>
<td>8</td>
<td>90 11.25</td>
</tr>
<tr>
<td>1000</td>
<td>9</td>
<td>90 10</td>
</tr>
<tr>
<td>1001</td>
<td>10</td>
<td>90 9</td>
</tr>
<tr>
<td>1010</td>
<td>11</td>
<td>90 8.1818...</td>
</tr>
<tr>
<td>1011</td>
<td>12</td>
<td>90 7.5</td>
</tr>
<tr>
<td>1100</td>
<td>13</td>
<td>90 6.9231...</td>
</tr>
<tr>
<td>1101</td>
<td>14</td>
<td>90 6.4286...</td>
</tr>
<tr>
<td>1110</td>
<td>15</td>
<td>90 6</td>
</tr>
<tr>
<td>1111</td>
<td>16</td>
<td>90 5.625</td>
</tr>
</tbody>
</table>
ABI Behavior at Power-Up

At power-up, the AAS33001 ABI interface communicates the current position. This means that reading the angle through the PWM output is not needed to find the current position when using the ABI interface. The behavior at start-up is the following:

• During $t_{PO}$, the state of the interface is undefined.
• During a delay phase, the output will display a 0° angle. With default settings, the 0° angle is indicated by $A = B = \text{low}$ and $I = \text{high}$.
• The interface will the “catch up” with the actual measured angle by moving in positive or negative direction, whichever is faster. The time for catching up is at most:

$$t_{SETTLE(MAX)} = \frac{180°}{R} \times ABI_{slew\_time}$$

with $R$ = quadrature resolution.

• After catching up, with the output angle is completed, the sensor will operate normally.

If “ABI_slew_time” is set to 0, there is no “catch-up” phase. The output will jump to the final position immediately, e.g. with $A = \text{high}$ and $B = \text{low}$. With “ABI_slew_time” set to 0, the user cannot determine the position at startup from the ABI interface.

![Figure 12: ABI Startup Behavior](image-url)
**Angle Hysteresis**

Hysteresis can be applied to the compensated angle to moderate jitter in the angle output due to noise or mechanical vibration. In the AAS33001, the hysteresis field (ANG.hysteresis) defines the width of an angle window at 14-bit resolution. Mathematically, the width of this window is:

\[
\text{ANG.hysteresis} \times \left(\frac{360}{16384}\right) \text{ degrees}
\]

\[
\text{giving a range of 0 to 1.384 degrees.}
\]

The hysteresis-compensated angle can be routed to the ABI or UVW interface by setting the ABI.ahe bit to 1. On the SPI or Manchester interface, the hysteresis-compensated angle can be read via an alternate register (HANG.angle_hys) at 12-bit resolution.

The effect of the hysteresis is shown in Figure 13. The current angle position as measured by the sensor is at the “head” of the hysteresis window. As long as the sensor (electrical) angle advances in the same direction of rotation, the output angle will be the sensor angle, minimizing latency. If the sensor angle reverses direction, the output angle is held static until the sensor angle exits the hysteresis window in either direction. If the exit is in the opposite direction of rotation where the “head” was, the head flips to the opposite end of the hysteresis window and that becomes the new reference direction. The current direction of rotation, or “head” for the purposes of hysteresis, is viewable via the STA.rot bit, where 0 is increasing angle direction and 1 is in decreasing angle direction.

This behavior has the following consequences:

1. If the hysteresis window is greater than the output resolution, the output angle will skip consecutive incremental steps. If the hysteresis-compensated angle is selected for the ABI output, this would result in an integrity failure due to skipped quadrature states. To avoid this, it is recommended that the slew rate limiting be enabled on the ABI interface if hysteresis is used.

2. If there is jitter due to noise or mechanical vibration, especially at a static angle position or very slow rotation, the angle will tend to bias to one side of the window, depending on the direction of rotation as the angular velocity approaches zero (i.e., towards the current “head”) rather than to the average position of the jitter.

**Figure 13: Effect of Hysteresis**

Note: The rotation direction resets to 0, or increasing angle direction. At power-up or after LBIST, the hysteresis window will always be behind the initial angle position, so if hysteresis is enabled, a decreasing angle direction of rotation will not register until the hysteresis window is past.
The AAS33001 can be programmed in two ways:

- Using the **SPI interface** for input and output, while supplying the VCC pin with normal operating voltage
- Using a **Manchester protocol** on the supply pin for input, and the PWM pin for output.

The AAS33001 does not require special supply voltages to write to the EEPROM.

All setting fields and all data fields of the sensor can be read and written using both protocols. If EEPROM locking is used (detailed in EEPROM lock section), then write access using either of the protocols will be prevented.

A separate setting to completely disable the Manchester interface is available in the dm field of the EEPROM. Using this setting will cause the sensor to ignore any commands entered using Manchester protocol. The SPI interface will not be disabled by disabling the Manchester interface.

### Interface Structure

The AAS33001 consists of two memory blocks. The primary serial interface registers are used for direct writes and reads by the host controller for frequently required information (for example, angle data, warning flags, field strength, and temperature). All forms of communication (even to the extended locations) operate through the primary registers, whether it be via SPI or Manchester.

The primary serial registers also provide a data and address location for accessing extended memory locations. Accessing these extended location is done in an indirect fashion: the controller writes into the primary interface to give a command to the sensor to access the extended locations. The read/write is executed and the result is again presented in the primary interface.

This concept is shown in Figure 14 below.

For writing extended locations, the primary interface offers extended write address, data, and control registers. Refer to the section “Write Transaction to EEPROM and Other Extended Locations” for details on their usage.

For reading extended locations, the primary interface offers extended read address, data, and control registers. Refer to the section “Read Transaction from EEPROM and other Extended Locations” for details on their usage.

EEPROM writing requires additional procedures. For more information on EEPROM and shadow memory read and write access, see “EEPROM and Shadow Memory Usage” section.

The primary serial interface can be accessed using the SPI and using the Manchester interface. These two interfaces are detailed in the sections below.

### DEVICE PROGRAMMING INTERFACE

**Table:**

<table>
<thead>
<tr>
<th>Address</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>02:03</td>
<td>Extended Write Address</td>
</tr>
<tr>
<td>04:05</td>
<td>Extended Write Data High</td>
</tr>
<tr>
<td>06:07</td>
<td>Extended Write Data Low</td>
</tr>
<tr>
<td>08:09</td>
<td>Extended Write Control/Status</td>
</tr>
<tr>
<td>0A:0B</td>
<td>Extended Read Address</td>
</tr>
<tr>
<td>0C:0D</td>
<td>Extended Read Control/Status</td>
</tr>
<tr>
<td>0E:0F</td>
<td>Extended Read Data High</td>
</tr>
<tr>
<td>10:11</td>
<td>Extended Read Data Low</td>
</tr>
<tr>
<td>1E:1F</td>
<td>Device Control (CTRL)</td>
</tr>
<tr>
<td>20:21</td>
<td>Angle (ANG)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Figure 14: Serial Registers allow access to extended memory (EEPROM and Shadow)
SPI Interface

The AAS33001 provides a full-duplex 4-pin SPI interface for each die, using SPI mode 3 (CPHA = 1, CPOL = 1). All programming can be done using this interface, but all programming can also be done using the Manchester interface.

If the SPI interface is not used, do not leave the chip select line floating but instead follow the recommendations in the “Typical SPI and ABI/UVW Applications” section.

The sensor responds to commands received on the MOSI (Master-Out Slave-In), SCLK (Serial Clock), and CSB (Chip Select) pins, and outputs data on the MISO (Master-In Slave-Out) pin. All three input pins are 3.3 V and 5 V SPI compatible, with threshold values determined by factory EEPROM settings. MISO output voltage level will conform to 3.3 V or 5 V SPI levels, based on factory settings. See the Selection Guide for ordering options of each variant.

The setup for communication using the SPI interface is given in Figure 15 below:

Figure 15: Programming Connections for SPI Interface

TIMING

The interface timing parameters from the specification table are defined in Figure 16 and Figure 17 below.

Figure 16: SPI Interface Timings Input

Figure 17: SPI Interface Timings Output
MESSAGE FRAME SIZE

The SPI interface requires either 16, 17, or 20-bit packet lengths. An extended 20-bit SPI packet allows 4 bits of CRC to accompany every data packet. A 17-bit packet is only allowed if the EEPROM/Shadow bit “s17” is set to 1.

![Figure 18: 16-Bit SPI Frame](image)

![Figure 19: 17-Bit SPI Frame](image)

![Figure 20: 20-Bit SPI Frame](image)

If more clock pulses than expected were detected by the sensor in an SPI transaction, the interface warning “warn.ier” will activate. This warning will not activate on clean SPI transactions with 16 or 20 bit, or with clean 17-bit transactions when “s17” is enabled.

The purpose of the 17-bit SPI option is to allow delayed reading of the MISO line by the host. Some hosts allow sampling of data from the slave not on the rising edge, but on the next falling edge of SCLK. This way, in case of long interface delays caused by large line capacitance or very long cables, the permissible clock speed can be increased. However, a 17th falling edge is required to read the 16th bit coming from the sensor. For the sensor to not display an error when this 17th clock is found, the bit “s17” must be set.

WRITE CYCLE

Write cycles consist of a 1-bit low, a 1-bit R/W (write = high), 6 address bits (corresponding to the primary serial register), 8 data bits, and 4 optional CRC bits. To write a full 16-bit serial register, two write commands are required (even and odd byte addresses). MOSI bits are clocked in on the rising edge of the Master-generated SCLK signal.

READ CYCLE

Reading data always involves at least two SPI frames. In the first frame, the read command is sent, while in the second frame, the result from the first read is received. While receiving data from the last read command, it is possible to send another read command (duplexed read). This way, every frame except the first one contains data from the sensor. This is useful for very fast reading of angle information.

When receiving the last frame, the host can transmit a command with MOSI set to all zeros. This represents a read command from register 0x00 and will not change the state of the sensor. Reading from register 0x00 will output the value 0x0000.

In frames where no previous read command was sent, the MISO data output should be ignored.
Because an SPI read command can transmit 16 data bits at one time, and the primary serial registers are built from one even and one odd byte, the entire 16-bit contents of one serial register may be transmitted with one SPI frame. This is accomplished by providing an even serial address value. If an odd value address is sent, only the contents of the single byte will be returned, with the eight most significant bits within the SPI packet set to zero. Example: To read all 16 bits of the error register (0x24:0x25), an SPI read request using address 0x24 should be sent. If only the 8 LSBs are desired, the address 0x25 should be used. Figure 21 shows examples of both an SPI write and an SPI read request, using a 16-bit SPI message frame.

Figure 21: SPI Read and Write Pulse Sequences
CRC

If the user wants to check the data coming from the sensor, it is possible to use 20-bit SPI frames. Without additional setting required, a 4-bit CRC is automatically generated and placed on the MISO line if more than 16 bits are read from the sensor.

The four additional CRC bits on the MOSI line coming from the host are ignored by the sensor, unless the “PWI.sc” bit is set within EEPROM. When the incoming CRC check is enabled, an incoming SPI packet with an incorrect CRC will be discarded, and the CRC error flag set in serial register “warn.crc”.

The CRC is based on the polynomial \( x^4 + x + 1 \) with the linear feedback shift register preset to all 1s. The 16-bit packet is shifted through from bit 15 (MSB) to bit 0 (LSB). The CRC logic is shown in Figure 22. Data are fed into the CRC logic with MSB first. Output is sent as C3-C2-C1-C0.

![Figure 22: SPI CRC](image)

The CRC output by the sensor on the MISO pin will always be calculated correctly. The CRC from the host on the MOSI pin must be correct if the CRC enable bit PWI.sc in the EEPROM was set.

Note: If the ERD (extended read data) register is read before the “ERCS.ERD” bit indicates a read has completed, there is a possibility of a CRC error, as the data could change during the read. Do not read the ERD register until it is known to be stable based on the done bit indication or waiting sufficient time.

The CRC can be calculated with the following C code:

```c
/*
 * CalculateCRC
 */
uint8_t CalculateCRC(uint16_t input)
{
    bool CRC0 = true;
    bool CRC1 = true;
    bool CRC2 = true;
    bool CRC3 = true;
    int i;
    bool DoInvert;
    uint16_t mask = 0x8000;
    for (i = 0; i < 16; ++i)
    {
        DoInvert = ((input & mask) != 0) ^ CRC3; // XOR required?
        CRC3 = CRC2;
        CRC2 = CRC1;
        CRC1 = CRC0 ^ DoInvert;
        CRC0 = DoInvert;
        mask >>= 1;
    }
    return (CRC3 ? 8U : 0U) + (CRC2 ? 4U : 0U) + (CRC1 ? 2U : 0U) + (CRC0 ? 1U : 0U);
}
```

This code can be tested at [http://codepad.org/jPPW1CQ4](http://codepad.org/jPPW1CQ4).
Manchester Interface

To facilitate addressable device programming when using the unidirectional PWM output mode with no need for additional wiring, the AAS33001 incorporates a serial interface on the VCC line. All programming can be done using this interface, but all programming can also be done using the SPI interface.

This interface allows an external controller to read and write registers in the AAS33001 EEPROM and volatile memory. The device uses a point-to-point communication protocol, based on Manchester encoding per G.E. Thomas (a rising edge indicates a 0 and a falling edge indicates a 1), with address and data transmitted MSB first. The addressable Manchester code implementation uses the logic states of the CSN/MOSI pins to set address values for each die. In this way, individual communication with up to four AAS33001 dies is possible. Using a broadcast Manchester command, any die receiving the command will respond. To prevent any undesired programming of the AAS33001, the serial interface can be disabled by setting the Disable Manchester bit, “PWI.dm”, to 1. With this bit set, the sensor will ignore any Manchester input on VCC.

The setup for communication using the Manchester interface is given in Figure 23.

**Figure 23: Manchester Interface Programming Setup**

### CONCEPT OF MANCHESTER COMMUNICATION

The Manchester interface allows programming and readout with a minimal number of pins involved. This is beneficial for sensor subassemblies connected to wiring harnesses, because less connections are needed. The supply level is typically modulated between 5 and 8 volts ($V_{MAN(H)}$ and $V_{MAN(L)}$) to produce a “low” and “high” signal. In the absence of a clock signal, Manchester encoding is used, allowing the sensor to determine the bit rate that the host is using.

The master can freely choose any supported Manchester communication frequency for each transaction. The sensor will recognize the transaction speed used by the master and send the response at the same data rate.

As Manchester commands are sent on the supply line, the speed is usually limited by capacitances on the supply line. A reduction of the bit rate, or using a stronger line driver, can help to ensure stable communication.

If a correct read command was sent, the sensor responds to the master using the open-drain output on the PWM line. The high level will be determined by the PWM pull-up (usually 3.3 V or 5 V), and the low level will be close to GND. The PWM uses an open drain output, setting the logic levels to GND and logic level high (see Figure 23). A sufficient pull-up resistor (e.g. 4.7 kΩ) must be used to pull the line to a maximum logic high level $V_{IN}$.

### ENTERING MANCHESTER COMMUNICATION MODE

Provided the Disable Manchester bit is not set in EEPROM, the AAS33001 continuously monitors the VCC line for valid Manchester commands. The part takes no action until a valid Manchester Access Code is received.

There are two special Manchester code commands used to activate or deactivate the serial interface and specify the output format used during Read operations:

1. Manchester Access Code: Enters Manchester Communication Mode; Manchester code output on the PWM pin. See further paragraphs for example.
2. Manchester Exit Code; returns the PWM pin to normal operation. See further paragraphs for example.

Once the Manchester Communication Mode is entered, the PWM output pin will cease to provide angle data, interrupting any data transmission in progress.

### TRANSACTION TYPES

The AAS33001 receives all commands via the VCC pin, and responds to Read commands via the PWM pin. This implementation of Manchester encoding requires the communication pulses be within a high ($V_{MAN(H)}$) and low ($V_{MAN(L)}$) range of voltages on the VCC line. Each transaction is initiated by a command from the controller; the sensor does not initiate any transactions. Two commands are recognized by the AAS33001: Write and Read.
**CONTROLLER MANCHESTER MESSAGE STRUCTURE**

The general format of a command message frame is shown in Figure 24. Note that, in the Manchester coding used, a bit value of 1 is indicated by a falling edge within the bit boundary, and a bit value of zero is indicated by a rising edge within the bit boundary.

![Manchester Message Format](image)

Figure 24: Manchester Message Format

A brief description of the bit fields is provided in Table 5:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Synchronization</td>
<td>Value '00' sent to identify a command start and to synchronise sensor clock</td>
</tr>
<tr>
<td>1</td>
<td>Read/Write</td>
<td>0 = write, 1 = read</td>
</tr>
<tr>
<td>4</td>
<td>Target ID</td>
<td>Select the target ID for this transaction. [ID3 ID2 ID1 ID0] are each addressed / ignored by a 1 / 0 at their address, so that a write to [0011] will write to ID0 and ID1. Reading from several sensors at the same time will result in corrupted outputs if the output pins are tied together. Writing to [0000] is a broadcast write; it is written to all sensor dies.</td>
</tr>
<tr>
<td>6</td>
<td>Address</td>
<td>Serial address for read/write</td>
</tr>
<tr>
<td>16</td>
<td>Data</td>
<td>Only for writes: 16 bit write data. Omit for read commands</td>
</tr>
<tr>
<td>3</td>
<td>CRC</td>
<td>3-bit CRC, needed for all commands</td>
</tr>
</tbody>
</table>

When the AAS33001 is operating in PWM mode, the Die ID value is determined by the state of the CSN and MOSI pins, as detailed in Table 6:

<table>
<thead>
<tr>
<th>MOSI</th>
<th>CS</th>
<th>ID Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>ID0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>ID1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>ID2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>ID3</td>
</tr>
</tbody>
</table>

Using the 4 bits of the Chip Select field, die can be selected via their ID value, allowing up to four die to be individually addressed and providing for different group addressing schemes.

Example: If Target ID = [1 0 1 0], all die with ID3 or ID1 will be selected. If Target ID is set to [0 0 0 0], then no ID comparison will be made, allowing all sensors to be addressed at once. In case of PWM line sharing for Manchester communication, reading must be done one die at a time.
**SENSOR MANCHESTER MESSAGE STRUCTURE**

If a read command with the desired register number was sent from the controller to the sensor, the device responds with a Read Response frame using the Manchester protocol over the PWM output.

The following command messages can be exchanged between the device and the external controller:

- Manchester Access Code (host to sensor)
- Manchester Exit Code (host to sensor)
- Manchester Write Command (host to sensor)
- Manchester Read Command (host to sensor)
- Manchester Read Response (sensor to host)

In addition to the contents of the requested memory location, a Return Status field is included with every Read Response. This field provides the ID used to communicate with the part and any errors which may have occurred during the transaction. These bits are:

- ID – ID (CSN/MOSI) unless BC = 1 (ID will be 00)
- BC – Broadcast; ID field was zero or SPI mode active
- AE – Abort Error; edge detection failure after sync detect
- OR – Overrun Error; A new Manchester command has been received before the previous request could be completed
- CS – Checksum error; a prior command had a checksum error

For EEPROM address information, refer to the EEPROM structure section. For serial address locations, refer to the serial register map.

**MANCHESTER ACCESS CODE**

The Manchester Access Code has to be sent before other Manchester commands.

The Manchester Access Code always operates as a broadcast pulse, meaning the sensor will not look at the Target ID field. For example, if two sensors configured with ID0 and ID1 respectively are sharing a common VCC line, a Manchester Access Code with a Target ID value of [0 0 0 1] results in both sensors entering Manchester Serial Communication mode.

An example is given below, with target ID = [0 0 0 1], data = access code = 0x62D2, and CRC = ‘110’.

```
0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0
```

**Table 7: Manchester Access Code**

<table>
<thead>
<tr>
<th>Bits</th>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Synchronization</td>
<td>‘00’</td>
</tr>
<tr>
<td>1</td>
<td>Read/Write</td>
<td>‘0’</td>
</tr>
<tr>
<td>4</td>
<td>Target ID</td>
<td>‘0000’ (this command will always be a broadcast, even if it is addressed)</td>
</tr>
<tr>
<td>6</td>
<td>Address</td>
<td>‘111111’ (fixed number for Manchester access message)</td>
</tr>
<tr>
<td>16</td>
<td>Data</td>
<td>0x62D2 (fixed number for Manchester access message)</td>
</tr>
<tr>
<td>3</td>
<td>CRC</td>
<td>3-bit CRC</td>
</tr>
</tbody>
</table>

Figure 25: Target ID = [0 0 0 1], Data = Access code = 0x62D2, CRC = ‘110’ 4.3.5.2
MANCHESTER EXIT CODE
The Manchester Exit Code can be sent after Manchester access is complete in order to avoid accidental decoding of Manchester commands.

The Manchester Exit Code always operates as a broadcast pulse, meaning the sensor will not look at the Target ID field. For example, if two sensors configured with ID0 and ID1 respectively are sharing a common VCC line, a Manchester Access Code with a Target ID value of [0 0 0 0] results in both sensors exiting Manchester Serial Communication mode.

Table 8: Manchester Exit Code

<table>
<thead>
<tr>
<th>Bits</th>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Synchronization</td>
<td>‘00’</td>
</tr>
<tr>
<td>1</td>
<td>Read/Write</td>
<td>‘0’</td>
</tr>
<tr>
<td>4</td>
<td>Target ID</td>
<td>‘0000’ (this command will always be a broadcast, even if it is addressed)</td>
</tr>
<tr>
<td>6</td>
<td>Address</td>
<td>‘111111’ (fixed number for Manchester exit message)</td>
</tr>
<tr>
<td>16</td>
<td>Data</td>
<td>0x0000 (any value except 0x62D2 can be used for Manchester exit message)</td>
</tr>
<tr>
<td>3</td>
<td>CRC</td>
<td>3-bit CRC</td>
</tr>
</tbody>
</table>

An example is given below, with target ID = [0 0 0 1], data = 0x0000, and CRC = ‘110’.

Figure 26: Target ID = [0 0 0 1], Data = 0x0000, CRC = ‘110’

MANCHESTER READ COMMAND
Determines the serial address within the sensor from which the next Read Response will transmit data. The sensor must first receive a Manchester Access Code before responding to a read command. This command is sent by the controller.

Table 9: Manchester Read Command

<table>
<thead>
<tr>
<th>Bits</th>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Synchronization</td>
<td>‘00’</td>
</tr>
<tr>
<td>1</td>
<td>Read/Write</td>
<td>‘1’</td>
</tr>
<tr>
<td>4</td>
<td>Target ID</td>
<td>Depends on targeted sensor ID, e.g. to target ID0, use ‘0001’</td>
</tr>
<tr>
<td>6</td>
<td>Address</td>
<td>Serial Register Address, e.g. 0x10 for “read_data_lo”, or 0x20 for “angle”</td>
</tr>
<tr>
<td>3</td>
<td>CRC</td>
<td>3-bit CRC</td>
</tr>
</tbody>
</table>

An example is given below where register 0x20 “angle” is read from target ID [0 0 0 1] with CRC = ‘111’. The two sync pulses from the Read Response on the PWM return line are also shown.

Figure 27: Target ID = [0 0 0 1], “angle” = 0x20, CRC = ‘111’
MANCHESTER READ RESPONSE

The read response transmits data from the sensor to the controller after a read command. These data are sent by the sensor on the open-drain PWM pin. A pull-up resistor is needed for this to work.

Read from an even address returns even byte [15:8] and odd byte [7:0].
Read from an odd address returns odd byte [7:0] only. Data bits [15:8] will be zeroes.

Table 10: Manchester Read Response

<table>
<thead>
<tr>
<th>Bits</th>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Synchronization</td>
<td>'00'</td>
</tr>
<tr>
<td>2</td>
<td>ID</td>
<td>Target ID of the responding sensor die. '00' for ID0, '01' for ID1, '10' for ID2, '11' for ID3.</td>
</tr>
<tr>
<td>1</td>
<td>BC flag</td>
<td>'Broadcast': Value set to '1' if read command was a broadcast command (Target-ID set to [0 0 0 0]), '0' if not.</td>
</tr>
<tr>
<td>1</td>
<td>AE flag</td>
<td>'Abort error': Value set to '1' if a previous transaction was aborted and discarded, typically caused by incorrect bit lengths, '0' is there was no problem. The error is stored until it can be transmitted on the next read response, and is cleared afterwards.</td>
</tr>
<tr>
<td>1</td>
<td>OR flag</td>
<td>'Overrun error': If a command is sent to the sensor while the sensor is still sending a read response, and this command is completely transmitted before the read response was finished, and overrun error has occurred. This error is then stored until it can be transmitted on the next read response, and is cleared afterwards.</td>
</tr>
<tr>
<td>1</td>
<td>CS flag</td>
<td>'CRC error': Value set to '1' if a previous transaction had an incorrect CRC, '0' means there was no problem. The error is stored until it can be transmitted on the next read response, and is cleared afterwards.</td>
</tr>
<tr>
<td>16</td>
<td>data</td>
<td>Read from an Even address: even byte [15:8] and odd byte [7:0]. Read from an Odd address: odd byte [7:0] only. Data bits [15:8] will be zeroes.</td>
</tr>
<tr>
<td>3</td>
<td>CRC</td>
<td>3-bit CRC.</td>
</tr>
</tbody>
</table>

An example is given below where register 0x20 “angle” is read, and the response is ID ‘00’ (ID0), the four flags are all zeroes (no errors), the data is “0x5C34”, and the CRC is ‘100’.

Figure 28: ID = ‘00’, error flag = ‘0000’, Data = 0x5C34, CRC = ‘100’

MANCHESTER READ RESPONSE DELAY

The Manchester Read Response starts at the end of the Read Command. The response may start a ¼ bit time before the CRC is finished transmitting (overlap with last CRC bit) or ¼ after the CRC finished transmitting.
CRC

The serial Manchester interface uses a cyclic redundancy check (CRC) for data-bit error checking of all the bits coming after the two synchronization bits. The synchronization bits are not included in the CRC. The CRC algorithm is based on the polynomial:

\[ g(x) = x^3 + x + 1. \]

The calculation is represented graphically in Figure 29. The trailing 3 bits of a message frame comprise the CRC token. The CRC is initialized at 111. Data are fed into the CRC logic with MSB first. Output is sent as C2-C1-C0.

The 3-bit Manchester CRC can be calculated using the following C code:

```c
uint16_t ManchesterCRC(uint64_t data, uint16_t numberOfBits) {
    bool C0 = false;
    bool C1 = false;
    bool C2 = false;
    bool C0p = true;
    bool C1p = true;
    bool C2p = true;
    uint64_t bitMask = 1;
    bitMask <<= numberOfBits - 1;
    // Calculate the state machine
    for (; bitMask != 0; bitMask >>= 1) {
        C2 = C1p;
        C0 = C2p ^ ((data & bitMask) != 0);
        C1 = C0 ^ C0p;
        C0p = C0;
        C1p = C1;
        C2p = C2;
    }
    return (C2 ? 4U : 0U) + (C1 ? 2U : 0U) + (C0 ? 1U : 0U);
}
```

Figure 29: Manchester CRC Calculation
EEPROM AND SHADOW MEMORY USAGE

The device uses EEPROM to permanently store configuration parameters for operation. EEPROM is user-programmable and permanently stores operation parameter values or customer information. The operation parameters are downloaded to shadow (volatile) memory at power-up. Shadow fields are initially loaded from corresponding fields in EEPROM, but can be overwritten, either by performing an extended write to the shadow addresses, or by reprogramming the corresponding EEPROM fields and power cycling the IC. Use of Shadow Memory is substantially faster than accessing EEPROM. In situations where many parameter need to be tested quickly, shadow memory is recommended for trying parameter values before permanently programming them into EEPROM. The shadow memory registers have the same format as the EEPROM and are accessed at extended addresses 0x40 higher than the equivalent EEPROM address. Unused bits in the EEPROM do not exist in the related shadow register, and will return 0 when read. Shadow registers do not contain the ECC bits. Shadow registers have the same protection restrictions as the EEPROM. All registers can be read without unlocking. The mapping of bits from registers addresses in EEPROM to their corresponding register addresses in SHADOW is shown in the EEPROM table (See “EEPROM table” section).

Enabling EEPROM Access

To enable EEPROM write access after power-on-reset, a unlock code needs to be written to the serial register “keycode”. This involves five write commands, which should be executed after each other:

Write 0x00 to register 0x3C[15:8]
Write 0x27 to register 0x3C[15:8]
Write 0x81 to register 0x3C[15:8]
Write 0x1F to register 0x3C[15:8]
Write 0x77 to register 0x3C[15:8]

This needs to be done once after power-on reset if the customer intends to write to the EEPROM.

Writing to serial registers and reading from serial registers does not require anything special after power-on.

Reading all EEPROM cells is always possible.

EEPROM Write Lock

It is possible to protect the EEPROM against accidental writes.

- Setting the EEPROM field “lock” to value 0xC (‘1100’ binary) will block any writes to the EEPROM, so that permanent changes are not possible anymore. Temporary changes to the setting are still possible by writing to the shadow memory, but these changes are lost after a power cycle. This lock is permanent and cannot be reversed. Reading of the settings is still possible.

- Setting the EEPROM field “lock” to value 0x3 (‘0011’ binary) will lock EEPROM writes AND shadow memory writes. This means none of the sensor settings can be changed anymore. This lock is permanent and cannot be reversed. Reading of the settings is still possible.
EEPROM Access Exceptions and Write Lock Exceptions

It is possible to allow writes to the fields “cust” and “cust2” without having to enable EEPROM access, and even when the EEPROM write lock is enabled (“lock” = 0xC or “lock” = 0x3). This is controlled using the EEPROM fields “cud” (customer uses disables), “del” (disable EEPROM lock) and “dur” (disable unlock requirement). By default, the fields “cud”, “del” and “dur” are all set to zero.

Table 11 shows how these settings control EEPROM access to different fields:

<table>
<thead>
<tr>
<th>&quot;cud&quot; setting</th>
<th>&quot;dur&quot; setting</th>
<th>&quot;del&quot; setting</th>
<th>&quot;lock&quot; setting</th>
<th>Writes to Customer2 (0x17) possible…</th>
<th>Writes to Customer (0x1F) possible…</th>
<th>Writes to all other EEPROM possible…</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0/1</td>
<td>0x0</td>
<td>after keycode</td>
<td>after keycode</td>
<td>after keycode</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0/1</td>
<td>0x0</td>
<td>always</td>
<td>after keycode</td>
<td>after keycode</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0xC/0x3</td>
<td>never</td>
<td>never</td>
<td>never</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0xC/0x3</td>
<td>after keycode</td>
<td>never</td>
<td>never</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0xC/0x3</td>
<td>never</td>
<td>never</td>
<td>never</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0xC/0x3</td>
<td>always</td>
<td>never</td>
<td>never</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0/1</td>
<td>0x0</td>
<td>after keycode</td>
<td>after keycode</td>
<td>after keycode</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0/1</td>
<td>0x0</td>
<td>always</td>
<td>always</td>
<td>after keycode</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0xC/0x3</td>
<td>never</td>
<td>never</td>
<td>never</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0xC/0x3</td>
<td>after keycode</td>
<td>after keycode</td>
<td>never</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0xC/0x3</td>
<td>never</td>
<td>never</td>
<td>never</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0xC/0x3</td>
<td>always</td>
<td>always</td>
<td>never</td>
</tr>
</tbody>
</table>

Write Transaction to EEPROM and Other Extended Locations

Invoking an extended write access is a three-step process:

1. Write the extended address into the “ewa” register (using SPI or Manchester direct access). “ewa” is the 8-bit extended address that determines which extended memory address will be accessed.

2. Write the data that is to be transferred into the “ewd” registers (using SPI or Manchester direct access). This will take four SPI writes or 2 Manchester packets to load all 32 bits of data.

3. Invoke the extended access by writing the direct “ewcs.exw” bit with ‘1’.

The 32-bit of data in “ewd” are then written to the address specified in “ewa”.

The bit “ewcs.wdn” can be polled to determine when the write completes. This is only necessary for EEPROM writes, which can take up to 24 ms to complete. Shadow register writes complete immediately in one system clock cycle after synchronization.
For example, to write location 0x1F in the EEPROM with 0x00A45678:

- Write 0x1F to lower 8 bits of EWA register (0x1F to EWA+1 Address 0x03)
  
  | 0x43 | 0x1F |
  
- Write 0x00A45678 to EWD (0x00 to EWD, 0xA4 to EWD+1, 0x56 to EWD+2, 0x78 to EWD+3)
  
  | 0x44 | 0x00 | 0x45 | 0xA4 | 0x46 | 0x56 | 0x47 | 0x78 |
  
- Write 0x80 to EWCS
  
  | 0x48 | 0x80 |
  
- Read EWCS+1 until bit 0 (“wdn”) is set, or wait enough time.

In the example, register 0x08 is read, so that the second output byte is from register 0x09, and we wait for bit 0 to become ‘1’, which happens in the last read.

  | 0x08 | 0x00 0x00 0x00 0x08 | 0x00 0x00 0x00 0x01 | 0x00 0x00 0x01 0x00 | 0x00 0x01 0x00 0x00 |

If an access violation occurs (address not unlocked), the transaction will be terminated and the corresponding “rdn” or “wdn” bit set, and the “xee” warning bit will assert. The “xee” bit in the “err” register will also set if the EEPROM write aborts.
After writing to the EEPROM, verify that the write was successful by performing an EEPROM margin check.

**EEPROM Margin Check**

Due to nonidealities in transistors, current will slowly leak into or out of EEPROM cells and can, over time, cause small changes in the stored voltage level. Variances in voltage levels of the charge pump can result in a variety of stored EEPROM cell voltages when programming. If this value is marginally close to the threshold, the small drift over lifetime can cause this value to move across the threshold. This results in a corrupted EEPROM value. Since this drift happens slowly over time, if there is an issue, it may not appear for years. For this reason, it is important to perform margin testing (margining) to verify the internal voltage levels of EEPROM cells after programming, and ensure there will be no issue in the future.

Margining is performed by Allegro on all registers at final test. Since EEPROM cell voltages are only modified when writing to the cell, it is not necessary to perform margining on registers that have not been modified.

Margining is performed in two steps: the first checks the validity of the voltage stored on digital ‘1’ cells, and the second checks the voltage stored on digital ‘0’ cells. It is important to perform both steps to ensure there are no issues.

In order to perform margining, a value of ‘0b0001’ must be written to the SPECIAL field of the CTRL register. This reduces the internal threshold value. Once this value is written, an EEPROM read will use this lower threshold when reading EEPROM values. Perform a read on all EEPROM registers that are being tested, and confirm they read correctly. If a stored voltage is marginal to the normal operating threshold, it will appear as a ‘1’ when it should be a ‘0’.

Repeat this test with the value of ‘0b0010’ in the SPECIAL register to raise the threshold value above normal operation. Again, read all EEPROM registers being tested. In this test, any stored high voltage that is marginal to the normal threshold will appear as a ‘0’ when they should be ‘1’.

If during either test, a bit is read incorrectly, simply perform another EEPROM write of the desired values to the register, and retest the margins.

Unlike other values in the SPECIAL field, these values will persist and can be read to confirm the write was successful. As a result, the SPECIAL register must be cleared (or power cycled) to return the threshold value to its normal level.

In the figure below, \( V_{NOM(H)} \) represents the nominal voltage programmed into EEPROM cells containing a ‘1’, and \( V_{NOM(L)} \) represents the nominal voltage programmed into EEPROM cells containing a ‘0’. The red and blue lines represent the actual voltage levels in the programmed cells for ‘1’ and ‘0’ values respectively. As can be seen, at time 0 when the margin test is run, both high and low levels still appear to be the correct value when the threshold is moved to the margin testing levels.

![Figure 30: Example of passing programming voltages](image)

In the figure below, the high and low voltage levels at the time of programming are further from their target. The drift over time results in these value crossing \( V_{THRESH} \), and becoming corrupted. At time 0 when the margin test is run, these values fail, and would be reported as errors to be reprogrammed.

![Figure 31: Example of failing programming voltages](image)
Margining is shown below as a list of high level steps. For details on performing individual steps, see the associated sections.

1. Clear the ERR and WARN registers.
2. Write new data to EEPROM as desired.
3. Check the following flags for communication errors: ESE, EUE, XEE, IER, CRC, BSY.
4. Set CTRL.special to ‘0001’ and confirm by writing 0xA5 to CTRL.initiate_special.
5. Check the following flags for communication errors: ESE, EUE, XEE, IER, CRC, BSY.
6. Read all EEPROM registers changed in step 1 and verify their contents.
7. Set CTRL.special to ‘0010’ and confirm by writing 0xA5 to CTRL.initiate_special.
8. Check the following flags for communication errors: ESE, EUE, XEE, IER, CRC, BSY.
9. Read all EEPROM registers changed in step 1 and verify their contents.
10. If any values read in steps 3/5 are not what was set in step 1, repeat steps 1-6 for erroneous registers.
11. Set CTRL.special to ‘0000’, or power cycle the part.
Read Transaction from EEPROM and other Extended Locations

Extended access is provided to additional memory space via the direct registers. This access includes the EEPROM and EEPROM shadow registers. All extended registers are up to 32 bits wide. Invoking an extended read access is a three-step process:

1. Write the extended address to be read into the “era” register (using SPI or Manchester direct access). “era” is the 8-bit extended address that determines which extended memory address will be accessed.

2. Invoke the extended access by writing the direct “ercs.ext” bit with ‘1’. The address specified in “era” is then read, and the data is loaded into the “erd” registers.

3. Read the “erd” registers (using SPI or Manchester direct access) to get the extended data. This will take multiple packets to get all 32 bits.

EEPROM read accesses may take up to 2 µs to complete. The “ercs.rdn” bit can be polled to determine if the read access is complete before reading the data. Shadow register reads complete in one system clock cycle after synchronization. Do not attempt to read the “erd” registers if the read access is potentially in process, as it could change during the serial access and the data will be inconsistent. It is also possible that an SPI CRC error will be detected if the data changes during the serial read via the SPI interface.
For example, to read location 0x1F in the EEPROM:

- Write 0x1F to lower 8 bits of “era” (0x1F to “era+1”, Address 0x0B)

• Write 0x80 to “ercs”

• Read “ercs”+1 until bit 0 (“rdn”) is set, or wait enough time.
In the example, register 0x0C is read, so that the last bit of the second output byte contains the “rdn” bit.

• Read “erdh” (upper 16 bits of read data)
• Read “erdl” (lower 16 bits of read data)

In the example below, the result for the data at address 0x1F is 0x58A45678. In this value,

□ Bit [31:26] are the EEPROM CRC
□ Bit [25:24] are unused and zero
□ Bit [23:0] are the EEPROM values that can be used. These are the 24 bits containing the information 0xA45678 that was written in the EEPROM write example.

Note that it would have been possible to pipeline transactions in this example, i.e. send a new command while reading return data from the old command. This way the transaction could have been performed in 5 SPI frames instead of 8.
Shadow Memory Read and Write Transactions

Shadow memory Read and Write transactions are identical to those for EEPROM. Instead of addressing to the EEPROM extended address, one must address to the Shadow Extended addresses, which are located at an offset of 0x40 above the EEPROM. Refer to the EEPROM table for all addresses.
## SERIAL INTERFACE TABLE

Table 12: Primary Serial Interface Registers Bits Map

<table>
<thead>
<tr>
<th>Address (0x00)</th>
<th>Register Symbol</th>
<th>Read/Write</th>
<th>Addressed Byte (MSB)</th>
<th>Addressed Byte + 1 (MSB)</th>
<th>LSB Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x02</td>
<td>ewa</td>
<td>RW</td>
<td>0 0 0 0 0 0 0 0 0 0 0</td>
<td>write_adr</td>
<td>0x03</td>
</tr>
<tr>
<td>0x04</td>
<td>ewdh</td>
<td>RW</td>
<td></td>
<td></td>
<td>0x05</td>
</tr>
<tr>
<td>0x06</td>
<td>ewdl</td>
<td>RW</td>
<td></td>
<td></td>
<td>0x07</td>
</tr>
<tr>
<td>0x08</td>
<td>ercs</td>
<td>WO/RO</td>
<td>exw 0 0 0 0 0 0 0 0 0 0 0</td>
<td>wip 0 0 0 0 0 0</td>
<td>0x09</td>
</tr>
<tr>
<td>0x0A</td>
<td>era</td>
<td>RW</td>
<td></td>
<td></td>
<td>0x0B</td>
</tr>
<tr>
<td>0x0C</td>
<td>erc</td>
<td>WO/RO</td>
<td>exr 0 0 0 0 0 0 0 0 0 0 0</td>
<td>rip 0 0 0 0 0 0</td>
<td>0x0D</td>
</tr>
<tr>
<td>0x0E</td>
<td>erc</td>
<td>RO</td>
<td></td>
<td></td>
<td>0x0F</td>
</tr>
<tr>
<td>0x10</td>
<td>erd</td>
<td>RO</td>
<td></td>
<td></td>
<td>0x11</td>
</tr>
<tr>
<td>0x12</td>
<td>ctrl</td>
<td>RW/WO</td>
<td>special 0 0 0 0 0 0 0 0 0</td>
<td>initiate_special</td>
<td>0x12</td>
</tr>
<tr>
<td>0x13</td>
<td>ang</td>
<td>RO</td>
<td>0 ef uv p angle</td>
<td></td>
<td>0x21</td>
</tr>
<tr>
<td>0x14</td>
<td>sta</td>
<td>RO</td>
<td>1 0 0 0 0 0 0 0 0 0 0</td>
<td>diel 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0x23</td>
</tr>
<tr>
<td>0x15</td>
<td>err</td>
<td>RO</td>
<td>1 0 1 0 0 0 0 0 0 0 0</td>
<td>war stf avg abe plk zie eue ofe uvd uva msl rst</td>
<td>0x25</td>
</tr>
<tr>
<td>0x16</td>
<td>warn</td>
<td>RO</td>
<td>1 0 1 1 0 0 0 0 0 0 0</td>
<td>ier crc 0 0 0 0 0 0 0 0 0</td>
<td>0x26</td>
</tr>
<tr>
<td>0x17</td>
<td>warn</td>
<td>RO</td>
<td>1 0 1 1 1 0 0 0 0 0 0</td>
<td>ier crc 0 0 0 0 0 0 0 0 0</td>
<td>0x27</td>
</tr>
<tr>
<td>0x18</td>
<td>warn</td>
<td>RO</td>
<td>1 0 1 1 1 0 0 0 0 0 0</td>
<td>ier crc 0 0 0 0 0 0 0 0 0</td>
<td>0x28</td>
</tr>
<tr>
<td>0x19</td>
<td>warn</td>
<td>RO</td>
<td>1 0 1 1 1 0 0 0 0 0 0</td>
<td>ier crc 0 0 0 0 0 0 0 0 0</td>
<td>0x29</td>
</tr>
<tr>
<td>0x1A</td>
<td>field</td>
<td>RO</td>
<td>1 1 1 0 0 0 0 0 0 0 0</td>
<td>gauss 0 0 0 0 0 0 0 0 0 0</td>
<td>0x2B</td>
</tr>
<tr>
<td>0x1B</td>
<td>Unresolved</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0</td>
<td>0x2D</td>
</tr>
<tr>
<td>0x1C</td>
<td>Unresolved</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0</td>
<td>0x2F</td>
</tr>
<tr>
<td>0x1D</td>
<td>hang</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0</td>
<td>0x31</td>
</tr>
<tr>
<td>0x1E</td>
<td>hang</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0</td>
<td>0x32</td>
</tr>
<tr>
<td>0x1F</td>
<td>hang</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0</td>
<td>0x33</td>
</tr>
<tr>
<td>0x20</td>
<td>ang</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0</td>
<td>angle_15 0 0 0 0 0 0 0 0 0</td>
<td>0x34</td>
</tr>
<tr>
<td>0x21</td>
<td>ang</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0</td>
<td>angle_zcd 0 0 0 0 0 0 0 0 0</td>
<td>0x35</td>
</tr>
<tr>
<td>0x22</td>
<td>ang</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0</td>
<td>angle_hys 0 0 0 0 0 0 0 0 0</td>
<td>0x36</td>
</tr>
<tr>
<td>0x23</td>
<td>ang</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0</td>
<td>angle_hys 0 0 0 0 0 0 0 0 0</td>
<td>0x37</td>
</tr>
<tr>
<td>0x24</td>
<td>ang</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0</td>
<td>angle_hys 0 0 0 0 0 0 0 0 0</td>
<td>0x38</td>
</tr>
<tr>
<td>0x25</td>
<td>ang</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0</td>
<td>angle_hys 0 0 0 0 0 0 0 0 0</td>
<td>0x39</td>
</tr>
<tr>
<td>0x26</td>
<td>ang</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0</td>
<td>angle_hys 0 0 0 0 0 0 0 0 0</td>
<td>0x3A</td>
</tr>
<tr>
<td>0x27</td>
<td>ang</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0</td>
<td>angle_hys 0 0 0 0 0 0 0 0 0</td>
<td>0x3B</td>
</tr>
<tr>
<td>0x28</td>
<td>ang</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0</td>
<td>angle_hys 0 0 0 0 0 0 0 0 0</td>
<td>0x3C</td>
</tr>
<tr>
<td>0x29</td>
<td>ang</td>
<td>RO</td>
<td>0 0 0 0 0 0 0 0 0 0 0</td>
<td>angle_hys 0 0 0 0 0 0 0 0 0</td>
<td>0x3D</td>
</tr>
</tbody>
</table>

*Addresses that span multiple bytes are addressed by the most significant byte.*
PRIMARY SERIAL INTERFACE REGISTERS REFERENCE

Location 0x02:0x03 (“ewa”)

ewa.write_adr
The field “write_adr” is a bit field located at address 0x02[7:0].
This bit field is part of the location “ewa”.
8-bit address for extended writes. Writes require unlock.
  0x00-0x1F: EEPROM (takes about 24 ms)
  0x40-0x5F: Shadow

Location 0x04:0x05 (“ewdh”)

ewdh.write_data_hi
The field “write_data_hi” is a bit field located at address 0x04[15:0].
This bit field is part of the location “ewdh”.
Upper 16 bits of data for an extended write operation.

Location 0x06:0x07 (“ewdl”)

ewdl.write_data_lo
The field “write_data_lo” is a bit field located at address 0x06[15:0].
This bit field is part of the location “ewdl”.
Lower 16 bits of data for an extended write operation.

Location 0x08:0x09 (“ewcs”)

ewcs.wdn
The field “wdn” is a bit located at address 0x08[0].
This bit is part of the location “ewcs”.
Write done when wdn = ‘1’; wdn clears when exw is set to ‘1’.

ewcs.wip
The field “wip” is a bit located at address 0x08[8].
This bit is part of the location “ewcs”.
Write in progress when ‘1’.

ewcs.exw
The field “exw” is a bit located at address 0x08[15].
This bit is part of the location “ewcs”.
Initiate extended write by writing with ‘1’.
Set “wip” and clears “wdn”. Write-only, always reads back 0.

Location 0x0A:0x0B (“era”)

era.read_adr
The field “read_adr” is a bit field located at address 0x0A[7:0].
This bit field is part of the location “era”.
8-bit address for extended reads.
  0x00-0x1F: EEPROM (takes about 2 µs)
  0x40-0x5F: Shadow

NOTE: After LBIST or a reload of EEPROM values, this value of read_adr will be changed.

Location 0x0C:0x0D (“ercs”)

ercs.rdn
The field “rdn” is a bit located at address 0x0C[0].
This bit is part of the location “ercs”.
Read done when ‘1’, clears when “exr” set to ‘1’.

ercs.rip
The field “rip” is a bit located at address 0x0C[8].
This bit is part of the location “ercs”.
Read in progress when ‘1’.

ercs.exr
The field “exr” is a bit located at address 0x0C[15].
This bit is part of the location “ercs”.
Initiate extended read by writing with ‘1’. Set “rip” and clears “rdn”.
Write-only, always reads back 0.

Location 0x0E:0x0F (“erdh”)

erdh.read_data_hi
The field “read_data_hi” is a bit field located at address 0x0E[15:0].
This bit field is part of the location “erdh”.
Upper 16 bits of data from extended read operation, valid when RDN set to ‘1’.
Location 0x10:0x11 (“erdl”)

erdl.read_data_lo
The field “read_data_lo” is a bit field located at address 0x10[15:0]. This bit field is part of the location “erdl”.
Lower 16 bits of data from extended read operation, valid when RDN set to ‘1’.

Location 0x1E:0x1F (“ctrl”)

ctrl.initiate_special
The field “initiate_special” is a bit field located at address 0x1E[7:0]. This bit field is part of the location “ctrl”.
For certain actions from “special” bit field, a code must be set to “initiate special”. These are to be written into this bit field.
- 0xB9 initiates CVH self-test or functional BIST.
- 0xA5 initiates EEPROM margin or EEPROM reload.
- 0x5A initiates hard reset.
Read always returns 0x00.

ctrl.clw
The field “clw” is a bit located at address 0x1E[8]. This bit is part of the location “ctrl”.
Clear warning (WARN) register when set to ‘1’. Clears bits that were previously read from the “WARN”. Bits that were not yet read will not be cleared, so the user needs to read WARN first. Write-only, always returns 0.

ctrl.cls
The field “cls” is a bit located at address 0x1E[10]. This bit is part of the location “ctrl”.
Clear bits “sdn” and “bdn” from “status” register when set to ‘1’. Write-only, returns 0 when read.

ctrl.special
The field “special” is a bit field located at address 0x1E[15:12]. This bit field is part of the location “ctrl”.
Special actions. Some of the actions will only be invoked after the “initiate_special” field is written with the correct value. This field will return 0x00 on completion. Self-tests may be run in parallel.
- 0000 - No action.
- 0001 - Enable EEPROM low voltage margining.
- 0010 - Enable EEPROM high voltage margining.
- 0101 - Reload EEPROM. Requires unlock of part. Starts after writing 0xA5 to “initiate_special”.
- 0111 - Hard reset. Requires unlock of part. Starts after writing 0x5A to “initiate_special”.
- 1001 - Run CVH self-test. Starts after writing 0xB9 to “initiate_special”.
- 1010 - Run logic BIST. Starts after writing 0xB9 to “initiate_special”.
- 1011 - Run CVH self-test and logic-BIST in parallel. Starts after writing 0xB9 to “initiate_special”.

Location 0x20:0x21 (“ang”)

ang.angle
The field “angle” is a bit field located at address 0x20[11:0]. This bit field is part of the location “ang”.
Angle from PLL after processing. Angle in degrees = unsigned 12-bit value × (360 / 4096).

ang.p
The field “p” is a bit located at address 0x20[12]. This bit is part of the location “ang”.
Odd parity computed across all bits of this register. Value is chosen in such a way that there should always be an odd number of 1’s in the 16-bit word.

ang.uv
The field “uv” is a bit located at address 0x20[13]. This bit is part of the location “ang”.
Undervoltage flag (real time). OR of “uva” and “uvd” undervoltage flags. Conditions are realtime, but are masked by the Shadow mask bits.
ang.ef
The field “ef” is a bit located at address 0x20[14]. This bit is part of the location “ang”.
Error flag – will be ‘1’ if any unmasked bit in ERR or WARN is set.

Location 0x22:0x23 (“sta”)

sta.aok
The field “aok” is a bit located at address 0x22[0]. This bit is part of the location “sta”.
Angle output OK. PLL is in lock

sta.bip
The field “bip” is a bit located at address 0x22[1]. This bit is part of the location “sta”.
Boot in progress.

sta.cstr
The field “cstr” is a bit located at address 0x22[2]. This bit is part of the location “sta”.
CVH self-test running.

sta.lbr
The field “lbr” is a bit located at address 0x22[3]. This bit is part of the location “sta”.
LBIST running.

sta.bdn
The field “bdn” is a bit located at address 0x22[4]. This bit is part of the location “sta”.
Boot complete. EEPROM loaded and any startup self-tests are complete.

sta.sdn
The field “sdn” is a bit located at address 0x22[5]. This bit is part of the location “sta”.
Special access (from ctrl register) done. Clears to ‘0’ when SPECIAL triggered, set ‘1’ when complete.

sta.rot
The field “rot” is a bit located at address 0x22[7]. This bit is part of the location “sta”.
Rotation direction based on hysteresis (‘0’ = increasing angle, ‘1’ = decreasing angle).

sta.dieid
The field “dieid” is a bit field located at address 0x22[9:8]. This bit field is part of the location “sta”.
DIE ID from EEPROM (for multi-die packages).

Location 0x24:0x25 (“err”)
This is the error register. All errors are latched, meaning they will remain high after they occurred just once. Errors need to be read and then cleared in order to remove them. It is important that the user clears errors, so that subsequent errors become visible. This is especially important for the “rst” error flag (reset), which is always enabled after power on. Not removing it means that an unexpected reset cannot be discovered afterwards.

err.rst
The field “rst” is a bit located at address 0x24[0]. This bit is part of the location “err”.
Reset condition. Sets on power-on reset or on hard reset. Does not set on LBIST.

err.msl
The field “msl” is a bit located at address 0x24[1]. This bit is part of the location “err”.
Magnetic sense low fault. Magnetic sense was below the “mag_thres_lo” limit.

err.uva
The field “uva” is a bit located at address 0x24[2]. This bit is part of the location “err”.
Undervoltage detector tripped. Will be set again after clearing if the undervoltage situation persists. Based on analog regulator.
err.uvd
The field “uvd” is a bit located at address 0x24[3]. This bit is part of the location “err”.
Undervoltage detector tripped. Will be set again after clearing if the undervoltage situation persists.

err.ofe
The field “ofe” is a bit located at address 0x24[4]. This bit is part of the location “err”.
Oscillator frequency watchdog tripped.

err.eue
The field “eue” is a bit located at address 0x24[5]. This bit is part of the location “err”.
EEPROM uncorrectable error. A multi-bit EEPROM read occurred.

err.zie
The field “zie” is a bit located at address 0x24[6]. This bit is part of the location “err”.
Zero crossing integrity error. A zero crossing did not occur within the maximum time expected, likely indicating missing magnet, an extreme rotation speed, or a sensor defect.

err.plk
The field “plk” is a bit located at address 0x24[7]. This bit is part of the location “err”.
PLL lost lock.

err.abi
The field “abi” is a bit located at address 0x24[8]. This bit is part of the location “err”.
ABI integrity fault. The quadrature integrity of the ABI could not be maintained.

err.avg
The field “avg” is a bit located at address 0x24[9]. This bit is part of the location “err”.
Angle averaging error. The ORATE is too high for the velocity and the averaging is corrupted.

er.stf
The field “stf” is a bit located at address 0x24[10]. This bit is part of the location “err”.
Self-test failure.

err.war
The field “war” is a bit located at address 0x24[11]. This bit is part of the location “err”.
Warning. Some unmasked error bits are set in the WARN register. If WAR in mask register “MSK” is set, this will be forced to 0.

Location 0x26:0x27 (“warn”)

warn.msh
The field “msh” is a bit located at address 0x26[1]. This bit is part of the location “warn”.
Magnetic sense high fault. Magnetic sense has exceeded the “mag_thres_hi” limit.

warn.bsy
The field “bsy” is a bit located at address 0x26[2]. This bit is part of the location “warn”.
Extended access overflow. An EXW or EXR was initiated while previous extended read or write was in progress.

warn.sat
The field “sat” is a bit located at address 0x26[4]. This bit is part of the location “warn”.
Aggregate saturation flag. Shows that any internal signals have saturated, likely to have been cause by extremely strong or weak fields.

warn.ese
The field “ese” is a bit located at address 0x26[5]. This bit is part of the location “warn”.
EEPROM soft error. A correctable (single-bit) EEPROM read occurred.

warn.tr
The field “tr” is a bit located at address 0x26[6]. This bit is part of the location “warn”.
Temperature out of range. The temperature sensor calculated a temperature below –60°C or above 180°C. Temperature will saturate at those limits.
warn.xee
The field “xee” is a bit located at address 0x26[7]. This bit is part of the location “warn”.
Extended execute error. A command initiated by an extended write failed. Write failed due to access error (not unlocked) or EEPROM write failure.

warn.srw
The field “srw” is a bit located at address 0x26[8]. This bit is part of the location “warn”.
Slew rate warning. This warning is asserted if the ABI slew rate limiting is enabled and a condition that requires the limiting to be applied has occurred.

warn.crc
The field “crc” is a bit located at address 0x26[10]. This bit is part of the location “warn”.
Incoming SPI CRC error. Packet was discarded.

warn.ier
The field “ier” is a bit located at address 0x26[11]. This bit is part of the location “warn”.
Interface error. Invalid number of bits in SPI packet, or bit 15 of MOSI data = ‘1’. Packet was discarded.
Also Manchester error.

Location 0x28:0x29 (“tsen”)

tsen.temperature
The field “temperature” is a bit field located at address 0x28[11:0]. This bit field is part of the location “tsen”.
Current junction temperature from internal temperature sensor relative to 25°C (signed value). Value is in 1/8 of a degree. Temperature °C = (tsen.temperature / 8) + 25.0.

Location 0x30:0x31 (“hang”)
hang.angle_hys
The field “angle_hys” is a bit field located at address 0x30[11:0]. This bit field is part of the location “hang”.
Angle from PLL after processing. Angle in degrees = unsigned 12-bit value × (360 / 4096).
hang.p
The field “p” is a bit located at address 0x30[12]. This bit is part of the location “hang”.
Odd parity computed across all bits of this register. Value is chosen in such a way that there should always be an odd number of 1’s in the 16-bit word.
hang.uv
The field “uv” is a bit located at address 0x30[13]. This bit is part of the location “hang”.
Undervoltage flag (real time). OR of analog and digital UV flags. Conditions are realtime, but are masked by the Shadow mask bits.
hang.ef
The field “ef” is a bit located at address 0x30[14]. This bit is part of the location “hang”.
Error flag. Will be ‘1’ if any unmasked bit in ERR or WARN is set.

Location 0x32:0x33 (“ang15”)
ang15.angle_15
The field “angle_15” is a bit field located at address 0x32[14:0]. This bit field is part of the location “ang15”.
15-bit compensated angle (not rounded).
Location 0x34:0x35 (“zang”)

**zang.angle_zcd**
The field “angle_zcd” is a bit field located at address 0x34[11:0]. This bit field is part of the location “zang”.
Angle from zero-crossing-detector, which is used to verify that the PLL angle is correct.
Angle in degrees = unsigned 12-bit value × (360 / 4096).

**zang.p**
The field “p” is a bit located at address 0x34[12]. This bit is part of the location “zang”.
Odd parity computed across all bits of this register. Value is chosen in such a way that there should always be an odd number of 1’s in the 16-bit word.

**zang.uv**
The field “uv” is a bit located at address 0x34[13]. This bit is part of the location “zang”.
Undervoltage flag (real time). OR of analog and digital UV flags. Conditions are realtime, but are masked by the Shadow mask bits.

**zang.ef**
The field “ef” is a bit located at address 0x34[14]. This bit is part of the location “zang”.
Error flag. Will be ‘1’ if any unmasked bit in ERR or WARN is set.

Location 0x3C:0x3D (“key”)

**key.cul**
The field “cul” is a bit located at address 0x3C[0]. This bit is part of the location “key”.
Customer unlocked if ‘1’.

**key.keycode**
The field “keycode” is a bit field located at address 0x3C[15:8]. This bit field is part of the location “key”.
Customer access keycode is entered here, using five subsequent write commands with the numbers: 0x00, 0x27, 0x81, 0x1F, 0x77.
Always reads back 0.
### EEPROM AND SHADOW REGISTER TABLE

The EEPROM register bitmap is shown below. Addresses that span multiple bytes are addressed by the most significant byte. All EEPROM content can be read by the user. The EEPROM ECC field in bits [31:26] of each word are not shown here. Bits [25:24] of each EEPROM word are unused and not shown here, but are included in the ECC.

<table>
<thead>
<tr>
<th>Shadow Memory Address</th>
<th>EEPROM Address</th>
<th>Register Name</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x58</td>
<td>0x18</td>
<td>PWE</td>
<td>–</td>
</tr>
<tr>
<td>0x59</td>
<td>0x19</td>
<td>ABI</td>
<td>–</td>
</tr>
<tr>
<td>0x5A</td>
<td>0x1A</td>
<td>MSK</td>
<td>–</td>
</tr>
<tr>
<td>0x5B</td>
<td>0x1B</td>
<td>PWM</td>
<td>–</td>
</tr>
<tr>
<td>0x5C</td>
<td>0x1C</td>
<td>ANG</td>
<td>–</td>
</tr>
<tr>
<td>0x5D</td>
<td>0x1D</td>
<td>COM</td>
<td>–</td>
</tr>
<tr>
<td>0x5E</td>
<td>0x1E</td>
<td>CUS</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shadow Memory Address</th>
<th>EEPROM Address</th>
<th>Register Name</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x60</td>
<td>0x20</td>
<td>LIN00</td>
<td>–</td>
</tr>
<tr>
<td>0x61</td>
<td>0x21</td>
<td>LIN01</td>
<td>–</td>
</tr>
<tr>
<td>0x62</td>
<td>0x22</td>
<td>LIN12</td>
<td>–</td>
</tr>
<tr>
<td>0x63</td>
<td>0x23</td>
<td>LIN13</td>
<td>–</td>
</tr>
<tr>
<td>0x64</td>
<td>0x24</td>
<td>LIN14</td>
<td>–</td>
</tr>
<tr>
<td>0x65</td>
<td>0x25</td>
<td>LIN15</td>
<td>–</td>
</tr>
<tr>
<td>0x66</td>
<td>0x26</td>
<td>LIN28</td>
<td>–</td>
</tr>
<tr>
<td>0x67</td>
<td>0x27</td>
<td>LIN29</td>
<td>–</td>
</tr>
<tr>
<td>0x68</td>
<td>0x28</td>
<td>LIN30</td>
<td>–</td>
</tr>
<tr>
<td>0x69</td>
<td>0x29</td>
<td>LIN31</td>
<td>–</td>
</tr>
</tbody>
</table>

**Table 13: EEPROM/Shadow Memory Map**

<table>
<thead>
<tr>
<th>Shadow Memory Address</th>
<th>EEPROM Address</th>
<th>Register Name</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x58</td>
<td>0x18</td>
<td>PWE</td>
<td>–</td>
</tr>
<tr>
<td>0x59</td>
<td>0x19</td>
<td>ABI</td>
<td>–</td>
</tr>
<tr>
<td>0x5A</td>
<td>0x1A</td>
<td>MSK</td>
<td>–</td>
</tr>
<tr>
<td>0x5B</td>
<td>0x1B</td>
<td>PWM</td>
<td>–</td>
</tr>
<tr>
<td>0x5C</td>
<td>0x1C</td>
<td>ANG</td>
<td>–</td>
</tr>
<tr>
<td>0x5D</td>
<td>0x1D</td>
<td>COM</td>
<td>–</td>
</tr>
<tr>
<td>0x5E</td>
<td>0x1E</td>
<td>CUS</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shadow Memory Address</th>
<th>EEPROM Address</th>
<th>Register Name</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x60</td>
<td>0x20</td>
<td>LIN00</td>
<td>–</td>
</tr>
<tr>
<td>0x61</td>
<td>0x21</td>
<td>LIN01</td>
<td>–</td>
</tr>
<tr>
<td>0x62</td>
<td>0x22</td>
<td>LIN12</td>
<td>–</td>
</tr>
<tr>
<td>0x63</td>
<td>0x23</td>
<td>LIN13</td>
<td>–</td>
</tr>
<tr>
<td>0x64</td>
<td>0x24</td>
<td>LIN14</td>
<td>–</td>
</tr>
<tr>
<td>0x65</td>
<td>0x25</td>
<td>LIN15</td>
<td>–</td>
</tr>
<tr>
<td>0x66</td>
<td>0x26</td>
<td>LIN28</td>
<td>–</td>
</tr>
<tr>
<td>0x67</td>
<td>0x27</td>
<td>LIN29</td>
<td>–</td>
</tr>
<tr>
<td>0x68</td>
<td>0x28</td>
<td>LIN30</td>
<td>–</td>
</tr>
<tr>
<td>0x69</td>
<td>0x29</td>
<td>LIN31</td>
<td>–</td>
</tr>
</tbody>
</table>

---

**Notes:**
- Addresses that span multiple bytes are addressed by the most significant byte.
- All EEPROM content can be read by the user.
- The EEPROM ECC field in bits [31:26] of each word are not shown here.
- Bits [25:24] of each EEPROM word are unused and not shown here, but are included in the ECC.
EEPROM REFERENCE

Location 0x17 (“CU2”)
Customer-useable field, intended for storing data.
This word can be written even if EEPROM is locked. Write may be allowed without the unlock code based on COM.dur and COM.del settings (see word 0x1E).

CU2.customer 2
The field “customer 2” is a bit field located at address 0x17[23:0]. This bit field is part of the location “CU2”. Customer-useable field, intended for storing data.
Depending on COM.dur and COM.del settings, this word can be written even if EEPROM is locked. Details are given in the chapter “EEPROM write lock”.

Location 0x18 (“PWE”)

PWE.ofe
The field “ofe” is a bit located at address 0x18[0]. This bit is part of the location “PWE”.
PWM oscillator frequency watchdog error enable. Duty cycle output 5% at half the selected PWM frequency.

PWE.eue
The field “eue” is a bit located at address 0x18[1]. This bit is part of the location “PWE”.
PWM EEPROM uncorrectable error enable. Duty cycle 10.625% at half the selected PWM frequency.

PWE.stf
The field “stf” is a bit located at address 0x18[2]. This bit is part of the location “PWE”.
PWM self-test failure error enable. Duty cycle 16.25% at half the selected PWM frequency.

PWE.plk
The field “plk” is a bit located at address 0x18[3]. This bit is part of the location “PWE”.
PWM PLL Lost Lock error enable. Duty cycle 21.875% at half the selected PWM frequency.

PWE.zie
The field “zie” is a bit located at address 0x18[4]. This bit is part of the location “PWE”.
PWM zero crossing integrity error enable. Duty cycle 27.5% at half the selected PWM frequency.

PWE.avg
The field “avg” is a bit located at address 0x18[5]. This bit is part of the location “PWE”.
PWM angle averaging error enable. Duty cycle is 33.125% at half the selected PWM frequency.

PWE.uv
The field “uv” is a bit located at address 0x18[6]. This bit is part of the location “PWE”.
PWM undervoltage Fault enable (analog or digital). Duty cycle 38.75% at half the selected PWM frequency.

PWE.msl
The field “msl” is a bit located at address 0x18[7]. This bit is part of the location “PWE”.
PWM magnetic Sense Low Fault enable. Duty cycle 44.375% at half the selected PWM frequency.

PWE.ese
The field “ese” is a bit located at address 0x18[8]. This bit is part of the location “PWE”.
PWM EEPROM Soft Error enable. Duty cycle 50% at half the selected PWM frequency.

PWE.sat
The field “sat” is a bit located at address 0x18[9]. This bit is part of the location “PWE”.
PWM saturation warning enable. Duty cycle 55.625% at half the selected PWM frequency.

PWE.msh
The field “msh” is a bit located at address 0x18[10]. This bit is part of the location “PWE”.
PWM magnetic sense high fault enable. Duty cycle 61.25% at half the selected PWM frequency.
PWE.tr
The field “tr” is a bit located at address 0x18[11]. This bit is part of the location “PWE”.

PWM temperature sensor out of range error enable. Duty cycle 66.875% at half the selected PWM frequency.

Location 0x19 (“ABI’)

ABI.resolution_pairs
The field “resolution_pairs” is a bit field located at address 0x19[3:0]. This bit field is part of the location “ABI”.

ABI or UVW resolution.

If ABI selected, this selects AB cycle counts per rotation. Cycle count = 2^{(14-n)} where n is selected code.

If UVW selected, this is the number of pole pairs – 1.

ABI.uvw

The field “uvw” is a bit located at address 0x19[4]. This bit is part of the location “ABI”.

Incremental outputs UVW (1), ABI (0).

ABI.ioe

The field “ioe” is a bit located at address 0x19[5]. This bit is part of the location “ABI”.

Incremental output pins enable (see UVW).

ABI.plh

The field “plh” is a bit located at address 0x19[6]. This bit is part of the location “ABI”.

Enable ABI all high (before inversions) as error mode if PLL is unlocked.

ABI.wdh

The field “wdh” is a bit located at address 0x19[7]. This bit is part of the location “ABI”.

Enable ABI all high (before inversions) as error mode if high-frequency watchdog trips.

ABI.index_mode

The field “index_mode” is a bit field located at address 0x19[9:8]. This bit field is part of the location “ABI”.

ABI index mode, defines width and placement of index pulse.

- Mode 0: Angle = 0
- Mode 1: Angle = –R or 0
- Mode 2: Angle = –R, 0 or +R
- Mode 3: Angle = –2R, –R, 0 or +R

ABI.ahe

The field “ahe” is a bit located at address 0x19[12]. This bit is part of the location “ABI”.

ABI hysteresis enable. If 1, use hysteresis on angle going to ABI.

ABI.inv

The field “inv” is a bit located at address 0x19[15]. This bit is part of the location “ABI”.

Invert ABI or UVW signals.

ABI.abi_slew_time

The field “abi_slew_time” is a bit field located at address 0x19[21:16]. This bit field is part of the location “ABI”.

ABI slew rate limit. ‘0’ mean slew rate limiter is disabled. Otherwise, \((N + 1) \times 125\) ns (nominal) is the minimum edge-to-edge time for the ABI output. This limits the maximum ABI velocity.

Reducing the ABI output resolution may be useful to counteract this effect.

Location 0x1A (“MSK”)

MSK.rstm

The field “rstm” is a bit located at address 0x1A[0]. This bit is part of the location “MSK”.

Reset mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

MSK.mslm

The field “mslm” is a bit located at address 0x1A[1]. This bit is part of the location “MSK”.

Magnetic Sense Low Fault Mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

50
**MSK.uvam**
The field “uvam” is a bit located at address 0x1A[2]. This bit is part of the location “MSK”.

Analog undervoltage Fault Mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

**MSK.uvdm**
The field “uvdm” is a bit located at address 0x1A[3]. This bit is part of the location “MSK”.

Digital undervoltage Fault Mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

**MSK.ofem**
The field “ofem” is a bit located at address 0x1A[4]. This bit is part of the location “MSK”.

Oscillator frequency watchdog error mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

**MSK.euem**
The field “euem” is a bit located at address 0x1A[5]. This bit is part of the location “MSK”.

EEPROM Uncorrectable Error Mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

**MSK.ziem**
The field “ziem” is a bit located at address 0x1A[6]. This bit is part of the location “MSK”.

Zero crossing integrity error mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

**MSK.plkm**
The field “plkm” is a bit located at address 0x1A[7]. This bit is part of the location “MSK”.

PLL Lost Lock error mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

**MSK.abim**
The field “abim” is a bit located at address 0x1A[8]. This bit is part of the location “MSK”.

ABI integrity fault mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

**MSK.avgm**
The field “avgm” is a bit located at address 0x1A[9]. This bit is part of the location “MSK”.

Angle averaging fault mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

**MSK.stfm**
The field “stfm” is a bit located at address 0x1A[10]. This bit is part of the location “MSK”.

Self-test failure error mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

**MSK.warm**
The field “warm” is a bit located at address 0x1A[11]. This bit is part of the location “MSK”.

If set to 1, will not set WAR bit in the ERR register when unmasked warnings are present.

**MSK.mshm**
The field “mshm” is a bit located at address 0x1A[13]. This bit is part of the location “MSK”.

Magnetic Sense High Fault Mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

**MSK.bsym**
The field “bsym” is a bit located at address 0x1A[14]. This bit is part of the location “MSK”.

Indirect access busy error mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

**MSK.satm**
The field “satm” is a bit located at address 0x1A[16]. This bit is part of the location “MSK”.

Aggregate saturation flag mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

**MSK.esem**
The field “esem” is a bit located at address 0x1A[17]. This bit is part of the location “MSK”.

EEPROM Soft Error Mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.
MSK.trm
The field “trm” is a bit located at address 0x1A[18]. This bit is part of the location “MSK”.
Temperature sensor out of range error mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

MSK.xeem
The field “xeem” is a bit located at address 0x1A[19]. This bit is part of the location “MSK”.
Execute Error Mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

MSK.srwm
The field “srwm” is a bit located at address 0x1A[20]. This bit is part of the location “MSK”.
Slew rate warning mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

MSK.crcm
The field “crcm” is a bit located at address 0x1A[22]. This bit is part of the location “MSK”.
CRC Error Mask (SPI). If set to ‘1’, the corresponding error will not affect the error flag “ef”.

MSK.ierm
The field “ierm” is a bit located at address 0x1A[23]. This bit is part of the location “MSK”.
Interface Error Mask. If set to ‘1’, the corresponding error will not affect the error flag “ef”.

Location 0x1B ("PWI")

PWI.sc
The field “sc” is a bit located at address 0x1B[0]. This bit is part of the location “PWI”.
SPI CRC (incoming) validated if SC = 1, ignored if SC = 0.

PWI.s17
The field “s17” is a bit located at address 0x1B[1]. This bit is part of the location “PWI”.
SPI ignore 17th clock to allow negative edge host sampling.

PWI.dm
The field “dm” is a bit located at address 0x1B[3]. This bit is part of the location “PWI”.
Disable Manchester interface. If ‘1’, any Manchester input on VCC will be ignored.

PWI.zal
The field “zal” is a bit located at address 0x1B[7]. This bit is part of the location “PWI”.
Zero offset after linearization:
0 = Before linearization and rotation
1 = After linearization

PWI.ls
The field “ls” is a bit located at address 0x1B[10]. This bit is part of the location “PWI”.
Linearization scale:
0 = ±22.5 degrees
1 = ±45 degrees

PWI.eli
The field “eli” is a bit located at address 0x1B[11]. This bit is part of the location “PWI”.
Enable linearization:
0 = Disabled
1 = Enabled
The field “pes” is a bit located at address 0x1B[12]. This bit is part of the location “PWI”.

PWM error select (if “peo” = 1).

- 0 - PWM tristated, must reset (or set “peo” back to 0 in shadow) to release the PWM output.
- 1 - PWM carrier frequency halved and highest priority error output on PWM as selected duty cycle. See “PWM Output” section for more details.

The field “peo” is a bit located at address 0x1B[13]. This bit is part of the location “PWI”.

PWM error output enable. If ‘1’, “pes” selects the response to an enabled error (see “abe” word).

The field “phe” is a bit located at address 0x1B[14]. This bit is part of the location “PWI”.

PWM hysteresis enable. If 1, use hysteresis on angle going to PWM.

The field “pwm_freq” is a bit field located at address 0x1B[19:16]. This bit field is part of the location “PWI”.

PWM frequency select. See “PWM Output” section for more details.

The field “pwm_band” is a bit field located at address 0x1B[22:20]. This bit field is part of the location “PWI”.

PWM frequency band. See “PWM Output” section for more details.

The field “pen” is a bit located at address 0x1B[23]. This bit is part of the location “PWI”.

PWM Enable = 1. If 0, PWM is tristate.
Location 0x1D ("LPC")

LPC.cycle_time
The field "cycle_time" is a bit field located at address 0x1D[17:12]. This bit field is part of the location "LPC".

Alive counter increment rate in 8.192 ms increments with cycle time = \([N + 1] \times 8.192 \text{ ms}\).

Location 0x1E ("COM")

COM.mag_thres_lo
The field "mag_thres_lo" is a bit field located at address 0x1E[5:0]. This bit field is part of the location "COM".

Magnetic field low comparator value, field value equals low field error threshold in gauss divided by 16.

If set to 0, low threshold is disabled.
- 00 0000: Low field flag disabled
- 00 0001: 16 gauss
- 00 0010: 32 gauss
- ...
- 00 1101: 208 gauss (factory setting)
- ...
- 11 1111: 1108 gauss

COM.mag_thres_hi
The field "mag_thres_hi" is a bit field located at address 0x1E[11:6]. This bit field is part of the location "COM".

Magnetic field high comparator value, field value equals maximum field threshold in gauss divided by 32. If set to 0, high threshold is disabled.
- 00 0000: High field flag disabled
- 00 0001: 32 gauss
- 00 0010: 64 gauss
- ...
- 10 0101: 1184 gauss (factory setting)
- ...
- 11 1111: 2016 gauss

COM.dhr
The field "dhr" is a bit located at address 0x1E[12]. This bit is part of the location "COM".

Disable hard reset in serial CTRL register special if ‘1’.

COM.dst
The field “dst” is a bit located at address 0x1E[13]. This bit is part of the location “COM”.

Disable self-test initiation in serial CTRL register special if ‘1’.

COM.cud
The field “cud” is a bit located at address 0x1E[14]. This bit is part of the location “COM”.

If ‘1’, the “customer” word 0x1F will use the “dur” and “del” configuration in addition to the “customer2” word 0x17.

COM.del
The field “del” is a bit located at address 0x1E[16]. This bit is part of the location “COM”.

Disable EEPROM lock for CUST2 (EEPROM word 0x17) and, if CUD = 1, CUST word 0x1F. EEPROM lock will not affect write-ability of word 0x17 (and 0x1F if enabled).

COM.dur
The field “dur” is a bit located at address 0x1E[17]. This bit is part of the location “COM”.

Disable unlock requirement for CUST2 (EEPROM word 0x17) and if CUD = 1, CUST word 0x1F.

COM.cse
The field “cse” is a bit located at address 0x1E[18]. This bit is part of the location “COM”.

Enable CVH self-test at power-up.

COM.lbe
The field “lbe” is a bit located at address 0x1E[19]. This bit is part of the location “COM”.

Power-up logic BIST enable.

COM.lock
The field “lock” is a bit field located at address 0x1E[23:20]. This bit field is part of the location “COM”.

Lock options:
- 1100 Lock EEPROM writes
- 0011 Lock EEPROM writes AND indirect register writes
Location 0x1F ("CUS")

CUS.customer
The field “customer” is a bit field located at address 0x1F[23:0]. This bit field is part of the location “CUS”.
Customer-useable field, intended for storing data.
With certain settings, this word can be written even if EEPROM is locked. Details are given in the chapter “EEPROM write lock”.
If COM.cud = ‘1’, then, depending on COM.dur and COM.del settings, this word can be written even if EEPROM is locked. Details are given in the chapter “EEPROM write lock”.

Location 0x20 ("LIN00")

LIN00.Linearization Error Segment 0
The field “Linearization Error Segment 0” is a bit field located at address 0x20[11:0]. This bit field is part of the location “LIN00”.
Correction value at segment boundary. Signed, resolution is based on LS bit. Will be subtracted from sensor angle to produce linearized angle.
For LS = 0, range is ±22.5 degrees.
For LS = 1, range is ±45 degrees.

LIN00.Linearization Error Segment 1
The field “Linearization Error Segment 1” is a bit field located at address 0x20[23:12]. This bit field is part of the location “LIN00”.
Correction value at segment boundary. Signed, resolution is based on LS bit. Will be subtracted from sensor angle to produce linearized angle.
For LS = 0, range is ±22.5 degrees.
For LS = 1, range is ±45 degrees.

NOTE: linearization segments 2…29 have been omitted from the datasheet for reasons of brevity.

Location 0x2F ("LIN15")

LIN15.Linearization Error Segment 30
The field “Linearization Error Segment 30” is a bit field located at address 0x2F[11:0]. This bit field is part of the location “LIN15”.
Correction value at segment boundary. Signed, resolution is based on LS bit. Will be subtracted from sensor angle to produce linearized angle.
For LS = 0, range is ±22.5 degrees.
For LS = 1, range is ±45 degrees.

LIN15.Linearization Error Segment 31
The field “Linearization Error Segment 31” is a bit field located at address 0x2F[23:12]. This bit field is part of the location “LIN15”.
Correction value at segment boundary. Signed, resolution is based on LS bit. Will be subtracted from sensor angle to produce linearized angle.
For LS = 0, range is ±22.5 degrees.
For LS = 1, range is ±45 degrees.

Location 0x80 ("ALV")

ALV.alive counter
The field “alive counter” is a bit field located at address 0x80[31:0]. This bit field is part of the location “ALV”.
Alive counter is a 32-bit counter, which increments periodically from zero after power-on or hard reset. The alive increment period is based on the EEPROM cycle_time, which has a resolution of 8.192 ms. The alive counter can overflow. The overflow period of the counter is $[2^{32} \times 8.192 \times (cycle\_time + 1)]$ milliseconds. At cycle_time = 0, this period is approximately 400 days.
SAFETY AND DIAGNOSTICS

The AAS33001 was developed in accordance to the ASIL design flow. It incorporates several diagnostics.

Alive Counter

A 32-bit counter increments periodically from zero after power-on or hard reset. It is read via an extended read at address 0x80. The alive increment period is based on the EEPROM cycle_time, which has a resolution of 8.192 ms.

The alive counter can overflow. The overflow period of the counter is \[2^{32} \times 8.192 \times (lpm\_cycle\_time + 1)\] milliseconds. At \(lpm\_cycle\_time = 0\), this period is approximately 400 days.

Oscillator Watchdogs

The watchdogs run constantly. These watchdogs are intended to detect gross failures of either oscillator. Logic running on clocks based on each oscillator effectively counts clock periods produced in the other clock domain and compares to expected limits.

Logic Built-In Self-Test (LBIST)

Logic BIST is implemented to verify the integrity of the AAS33001 logic. It can be executed in parallel with the CVH self-test. LBIST is effectively a form of auto-driven scan. The logic to be tested is broken into 31 scan chains. The chains are fed in parallel by a 31-bit linear feedback shift register (LFSR) to generate pseudo-random data. The output of the scan chains are fed back into a multiple input shift register (MISR) that accumulates the shifted bits into a 31-bit signature. LBIST takes typically 30 ms to verify.

CVH Self-Test

CVH self-test is a method of verifying the operation of the CVH transducer without applying an external magnetic field. This feature is useful for both manufacturing test and for integration debug. The CVH self-test is implemented by changing the switch configuration from the normal operating mode into a test configuration, allowing a test current to drive the CVH in place of the magnetic field. By changing the direction of the test current and by changing the elements in the CVH that are driven, the self-test circuit emulates a changing angle of magnetic field. The measured angle is monitored to determine a passing or failing device.

CVH self-test typically takes 30 ms to verify.

Self-test can be run on power-up, by setting the EEPROM field SHA.COM.cse = 1

Self-test can also be invoked via the serial control register by issuing the corresponding “special” command.

The test is complete when either:

• “STA.sdn” = 1 (special done) or
• “STA.cstr” = 0 (CVH self-test not running).

Failure is indicated by:

• “ERR.stf” = 1 (assuming it was cleared before test was run).
Magnetic Target Requirements

The AAS33001 is designed to operate with magnets constructed with a variety of magnetic materials, geometries, and field strengths. See Table 14 for a list of common magnet dimensions.

The AAS33001 actively measures and adapts to its magnetic environment. This allows operation throughout a large range of field strengths (recommended range is 300 to 1000 G, operation beyond this range will not result in long term damage). Due to the greater signal-to-noise ratio provided at higher field strengths, performance inherently increases with increasing field strength.

Table 14: Target Magnet Parameters

<table>
<thead>
<tr>
<th>Magnetic Material</th>
<th>Diameter (mm)</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neodymium (sintered)*</td>
<td>10</td>
<td>2.5</td>
</tr>
<tr>
<td>Neodymium (sintered)</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Neodymium / SmCo</td>
<td>6</td>
<td>2.5</td>
</tr>
</tbody>
</table>

* A sintered Neodymium magnet with 10 mm (or greater) diameter and 2.5 mm thickness is the recommended magnet for redundant applications.

Figure 32: Magnetic Field versus Air Gap for a magnet 6 mm in diameter and 2.5 mm thick.

Allegro can provide similar curves for customer application magnets upon request. Allegro recommends larger magnets for applications that require optimized accuracy performance.
Typical SPI and ABI/UVW Applications

Below, typical application diagrams for SPI and ABI are given. Programming and controlling are possible using the SPI interface and the Manchester interface. The Manchester programming interface is useful for low pin count applications (e.g. ABI). See Manchester Interface section for details on programming with this interface.

![Typical SPI Application Diagram](image)

**Figure 33: Typical SPI Application Diagram**

Notes:
- PWM and ABI/UVW can be used in parallel to the SPI interface.
Figure 34: Typical ABI / UVW Application Diagram

Notes:

- PWM output can be left floating if not required. The absolute position is transferred through ABI pins after power on, so that PWM information is not needed to find the start position. The AAS33001 is different from the A1333 in this regard.
- For programming the sensor, CSB and MOSI determine the slave address. Read the Manchester Interface section for more details.
- If not needed by the host, any of the ABI outputs can be left floating. For example,
  - □ If only rotational frequency is needed, only pin A could be used.
  - □ If frequency and position is needed, but direction is always the same, only pin B and I could be used.
I/O STRUCTURES

A/U, B/V, I/W, MISO

PWM

SCK/CSN/MOSI

33 Ω

1 kΩ
AAS33001

Precision Angle Sensor IC with Incremental and Motor Commutation Outputs and On-Chip Linearization

PACKAGE OUTLINE DRAWINGS

For Reference Only – Not for Tooling Use
(Reference MO-153 ADT)
NOT TO SCALE
Dimensions in millimeters
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions
Exact case and lead configuration at supplier discretion within limits shown

Figure 35: Package LP, 24-Pin TSSOP with Exposed Thermal Pad
AAS33001

Precision Angle Sensor IC with Incremental and Motor Commutation Outputs and On-Chip Linearization

For Reference Only – Not for Tooling Use

(Reference DWG-2870)
Dimensions in millimeters – NOT TO SCALE
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions
Exact case and lead configuration at supplier discretion within limits shown

Figure 36: Package LE, 14-Pin TSSOP
## Revision History

<table>
<thead>
<tr>
<th>Number</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>March 28, 2018</td>
<td>Initial release</td>
</tr>
<tr>
<td>1</td>
<td>September 4, 2018</td>
<td>Updated Selection Guide (page 3) and Terminal List table (page 4)</td>
</tr>
<tr>
<td>2</td>
<td>October 4, 2019</td>
<td>Updated Selection Guide (page 3), Bypass Pin Output Voltage (page 5), Reverse Battery Current test conditions (page 5), Output High Voltage test conditions (page 5), and minor editorial updates.</td>
</tr>
<tr>
<td>3</td>
<td>October 25, 2019</td>
<td>Updated Table 12 (page 41) and I/O Structures (page 60).</td>
</tr>
<tr>
<td>4</td>
<td>July 13, 2020</td>
<td>Updated LE-14 and LP-24 package drawing Hall element tolerances (p. 61-62)</td>
</tr>
<tr>
<td>5</td>
<td>December 22, 2021</td>
<td>Updated Features and Benefits to indicate completion of ASIL assessment (page 1).</td>
</tr>
</tbody>
</table>

### Copyright

Copyright 2021, Allegro MicroSystems. Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro’s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro’s product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Copies of this document are considered uncontrolled documents.

For the latest version of this document, visit our website:

[www.allegromicro.com](http://www.allegromicro.com)