PWM Library
The CCP module is available with a number of dsPIC30/33 and PIC24 MCUs. mikroPascal PRO for dsPIC30/33 and PIC24 provides a library which simplifies using of the PWM HW Module.

Library Routines
PWM_Init
Prototype |
function PWM_Init(freq_hz : longint; enable_channel_x, timer_prescale, use_timer_x : word) : word; // 30F1010 and dsPIC33FJ06GS101/102/202 prototypefunction PWM_Init(freq_hz : longint; enable_channel_x, timer_prescale) : word; |
---|---|
Description |
Initializes the PWM module with duty ratio 0. |
Parameters |
|
Returns |
|
Requires |
MCU must have the HW PWM Module. |
Example |
// Initializes the PWM module at 5KHz, channel 1, no clock prescale, timer2 : var pwm_period1 : word; ... pwm_period1 := PWM_Init(5000, 1, 0, 2); |
Notes |
Number of available PWM channels depends on MCU. Refer to MCU datasheet for details. |
PWM_Set_Duty
Prototype |
procedure PWM_Set_Duty(duty, channel : word); |
---|---|
Description |
The function changes PWM duty ratio. |
Parameters |
|
Returns |
Nothing. |
Requires |
MCU must have the HW PWM Module. PWM channel must be properly initialized. See PWM_Init routine. |
Example |
// Set channel 1 duty ratio to 50%: var pwm_period1 : word; ... PWM_Set_Duty(pwm_period1 div 2, 1); |
Notes |
Number of available PWM channels depends on MCU. Refer to MCU datasheet for details. |
PWM_Start
Prototype |
procedure PWM_Start(enable_channel_x : byte); |
---|---|
Description |
Starts PWM at requested channel. |
Parameters |
|
Returns |
Nothing. |
Requires |
MCU must have the HW PWM Module. PWM channel must be properly configured. See the PWM_Init and PWM_Set_Duty routines. |
Example |
// start PWM at channel 1 PWM_Start(1); |
Notes |
Number of available PWM channels depends on MCU. Refer to MCU datasheet for details. |
PWM_Stop
Prototype |
procedure PWM_Stop(disable_channel_x : byte); |
---|---|
Description |
Stops PWM at requested channel. |
Parameters |
|
Returns |
Nothing. |
Requires |
MCU must have the HW PWM Module. |
Example |
// stop PWM at channel 1 PWM_Stop(1); |
Notes |
Number of available PWM channels depends on MCU. Refer to MCU datasheet for details. |
Library Example
The example changes PWM duty ratio on channels 1 and 2 continuously. If LEDs are connected to channels 1 and 2, a gradual change of emitted light will be noticeable.
program Pwm_Demo; var current_duty, old_duty, current_duty1, old_duty1 : word; pwm_period1, pwm_period2 : word; procedure InitMain(); begin ADPCFG := 0xFFFF; // TRISB := 0xFFFF; // configure PORTB pins as input PORTD := 0; // set PORTD to 0 TRISD := 0; // designate PORTD pins as output end; begin InitMain(); current_duty := 16; // initial value for current_duty current_duty1 := 16; // initial value for current_duty1 pwm_period1 := PWM_Init(5000 , 1, 1, 2); pwm_period2 := PWM_Init(10000, 2, 1, 3); PWM_Start(1); PWM_Start(2); PWM_Set_Duty(current_duty, 1); // Set current duty for PWM1 PWM_Set_Duty(current_duty1, 2); // Set current duty for PWM2 while (TRUE) do // endless loop begin if RB0_bit = 1 then // button on RB0 pressed begin Delay_ms(20); Inc(current_duty); // increment current_duty if (current_duty > pwm_period1) then // if we increase current_duty greater then possible pwm_period1 value current_duty := 0; // reset current_duty value to zero PWM_Set_Duty(current_duty, 1); // set newly acquired duty ratio end; if RB1_bit = 1 then // button on RB1 pressed begin Delay_ms(20); Dec(current_duty); // decrement current_duty if (current_duty > pwm_period1) then // if we decrease current_duty greater then possible pwm_period1 value (overflow) current_duty := pwm_period1; // set current_duty to max possible value PWM_Set_Duty(current_duty, 1); // set newly acquired duty ratio end; if RB2_bit = 1 then // button on RB2 pressed begin Delay_ms(20); Inc(current_duty1); // increment current_duty1 if (current_duty1 > pwm_period2) then // if we increase current_duty1 greater then possible pwm_period2 value current_duty1 := 0; // reset current_duty1 value to zero PWM_Set_Duty(current_duty1, 2); // set newly acquired duty ratio end; if RB3_bit = 1 then // button on RB3 pressed begin Delay_ms(20); Dec(current_duty1); // decrement current_duty1 if (current_duty1 > pwm_period2) then // if we decrease current_duty1 greater then possible pwm_period1 value (overflow) current_duty1 := pwm_period2; // set current_duty to max possible value PWM_Set_Duty(current_duty1, 2); end; Delay_ms(5); // slow down change pace a little end; end.
HW Connection
PWM demonstration
What do you think about this topic ? Send us feedback!