

Advertising article by MikroElektronika www.mikroe.com
mikroC PRO® is registered trademark of MikroElektronika. All rights reserved.

ADVERTISEMENT

OK.OK.

The use of MP3 format caused a revolution in digital sound compression technology by enabling audio fi les to
be several times smaller. If you want audio messages or music to be part of your project then you can easily make
it true. You just need any standard MMC or SD memory card, a few chips and a little time...

MP3MP3 player player
Now you need an ...Now you need an ...

By Milan Rajic
MikroElektronika - Software Department

SmartMP3 module connected to
EasyPIC5 Development System

a signal that can be brought to audio
speakers over a small audio amplifi er.
Considering that MMC/SD cards use
sections of 512 bytes in size, a micro-
controller with 512 byte RAM or more is
needed for the purpose of controlling
the operation of MP3. We have chosen
the PIC18F4520 with 1536 byte RAM.

Software
The program controlling the operation
of this device can be broken up into
fi ve steps:

Before we start, it is necessary to format
MMC card and save the sound1.mp3
fi le on it (the card should be formatted
in FAT16, i.e. FAT format).
The quality of sound coded in MP3 for-
mat depends on sampling rate and bit-
rate. Similar to an audio CD, most MP3
fi les are sampled at the frequency of
44.1 kHz. The MP3 fi le’s bitrate indicates
the quality of compressed audio com-
paring to the original uncompressed
one, i.e. its fi delity. A bitrate of 64 kbit/s
is suffi cient for speech reproduction,
while it has to be 128 kbit/s or more for
music reproduction. In this example a
music fi le with a bitrate of 128 kbit/s is
used.

Hardware
The sound contained in this fi le is coded
in the MP3 format so that an MP3 de-
coder is needed for its decoding. In our
example, the VS1011E chip is used for
this purpose. This chip decodes MP3 re-
cord and performs digital-to-analog con-
version of the signal in order to produce

Step 1: Initialization of the SPI module
 of the microcontroller.
Step 2: Initialization of the compiler’s
 Mmc_FAT16 library, which
 enables MP3 fi les to be read from
 MMC or SD cards.
Step 3: Reading a part of fi le.
Step 4: Sending data to the buff er of
 MP3 decoder.
Step 5: If the end of the fi le is not
 reached, jump to step 3.

Testing
It is recommended to start testing
device operation with lower bitrate
and increase it gradually. The buff er
of MP3 decoder is 2048 bytes in size.
If the buff er is loaded with a part of
MP3 fi le with 128 kbit/s bitrate, it will
contain twice the sound samples than
when it is loaded with a part of fi le
with 256 kbit/s bitrate. Accordingly,
if the bitrate of the fi le is lower it will
take twice as long to encode the buf-
fer content. If we over increase the
bitrate of the fi le it may happen that Figure 1. Block diagram of Smart MP3 module

 connected to a PIC 18F4520

MP3 English_C_PIC.indd 74MP3 English C PIC indd 74 3/12/2009 1:09:03 PM3/12/2009 1:09:03 PM

char fi lename[14] = “sound1.mp3”; // Set File name
unsigned long i, fi le_size;
const BUFFER_SIZE = 512;
char data_buff er_32[32], Buff erLarge[BUFFER_SIZE];
sbit Mmc_Chip_Select at RC0_bit;
sbit Mmc_Chip_Select_Direction at TRISC0_bit;
// Writes one byte to MP3 SDI
void SW_SPI_Write(unsigned data_) {
 RD1_bit = 1; // Set BSYNC before sending the fi rst bit
 RD2_bit = 0; RD3_bit = data_; RD2_bit = 1; data_ >>= 1; // Send data_ LSB, data_.0
 RD2_bit = 0; RD3_bit = data_; RD2_bit = 1; data_ >>= 1; // Send data_.1
 RD1_bit = 0; // Clear BSYNC after sending the second bit
 RD2_bit = 0; RD3_bit = data_; RD2_bit = 1; data_ >>= 1; // Send data_.2
 RD2_bit = 0; RD3_bit = data_; RD2_bit = 1; data_ >>= 1; // Send data_.3
 RD2_bit = 0; RD3_bit = data_; RD2_bit = 1; data_ >>= 1; // Send data_.4
 RD2_bit = 0; RD3_bit = data_; RD2_bit = 1; data_ >>= 1; // Send data_.5
 RD2_bit = 0; RD3_bit = data_; RD2_bit = 1; data_ >>= 1; // Send data_.6
 RD2_bit = 0; RD3_bit = data_; RD2_bit = 1; data_ >>= 1; // Send data_.7
 RD2_bit = 0;
}
// Writes one word to MP3 SCI
void MP3_SCI_Write(char address, unsigned int data_in) {
 RC1_bit = 0; // select MP3 SCI
 SPI1_Write(0x02); // send WRITE command
 SPI1_Write(address);
 SPI1_Write(data_in >> 8); // Send High byte
 SPI1_Write(data_in); // Send Low byte
 RC1_bit = 1; // deselect MP3 SCI
 Delay_us(5); // Required, see VS1001k datasheet chapter 5.4.1
}
// Reads words_count words from MP3 SCI
void MP3_SCI_Read(char start_address, char words_count, unsigned int *data_buff er) {
 unsigned int temp;
 RC1_bit = 0; // select MP3 SCI
 SPI1_Write(0x03); // send READ command
 SPI1_Write(start_address);
 while (words_count--) { // read words_count words byte per byte
 temp = SPI1_Read(0);
 temp <<= 8;
 temp += SPI1_Read(0);
 *(data_buff er++) = temp;
 }
 RC1_bit = 1; // deselect MP3 SCI
 Delay_us(5); // Required, see VS1001k datasheet chapter 5.4.1
}
// Write one byte to MP3 SDI
void MP3_SDI_Write(char data_) {
 while (RD0_bit == 0) ; // wait until DREQ becomes 1
 SW_SPI_Write(data_);
}
// Write 32 bytes to MP3 SDI
void MP3_SDI_Write_32(char *data_) {
 char i;
 while (RD0_bit == 0) ; // wait until DREQ becomes 1
 for (i=0; i<32; i++) SW_SPI_Write(data_[i]);
}
// Set clock
void Set_Clock(unsigned int clock_khz, char doubler) {
 clock_khz /= 2; // calculate value
 if (doubler) clock_khz |= 0x8000;
 MP3_SCI_Write(0x03, clock_khz); // Write value to CLOCKF register
}
void Init() {
 ADCON1 |= 0x0F; // set all AN pins to digital
 RD2_bit = 0; RD3_bit = 0; // Clear SW SPI SCK and SDO
 TRISD2_bit = 0; TRISD3_bit = 0; // Set SW SPI pin directions
 RC1_bit = 1; // Deselect MP3_CS
 TRISC1_bit = 0; // Confi gure MP3_CS as output
 RC2_bit = 1; // Set MP3_RST pin
 TRISC2_bit = 0; // Confi gure MP3_RST as output
 TRISD0_bit = 1; // Confi gure DREQ as input
 RD1_bit = 0; // Clear BSYNC
 TRISD1_bit = 0; // Confi gure BSYNC as output
}
// Software Reset
void Soft_Reset() {
 MP3_SCI_Write(0x00,0x0204); // Write to MODE register: set SM_RESET bit and SM_BITORD bit
 Delay_us(2); // Required, see VS1001k datasheet chapter 7.4
 while (RD0_bit == 0) ; // wait until DREQ becomes 1
 for (i=0; i<2048; i++) MP3_SDI_Write(0); // feed 2048 zeros to the MP3 SDI bus:
}
void main() { // main function
 Init();
 SPI1_Init_Advanced(MASTER_OSC_DIV64, DATA_SAMPLE_MIDDLE, CLK_IDLE_LOW, LOW_2_HIGH);
 Spi_Rd_Ptr = SPI1_Read;
 Set_Clock(25000,0); // Set clock to 25MHz, do not use clock doubler
 Soft_Reset(); // SW Reset
 if (Mmc_Fat_Init() == 0) {
 if (Mmc_Fat_Assign(&fi lename, 0)) { // Assign fi le “sound1.mp3”
 Mmc_Fat_Reset(&fi le_size); // Call Reset before fi le reading
 while (fi le_size > BUFFER_SIZE) { // Send fi le blocks to MP3 SDI
 for (i=0; i<BUFFER_SIZE; i++) // Read fi le block
 Mmc_Fat_Read(Buff erLarge + i);
 for (i=0; i<BUFFER_SIZE/32; i++) // Send fi le block to mp3 decoder
 MP3_SDI_Write_32(Buff erLarge + i*32);
 fi le_size -= BUFFER_SIZE; // Decrease fi le size
 }
 for (i=0; i<fi le_size; i++) // Send the rest of the fi le
 Mmc_Fat_Read(Buff erLarge + i);
 for (i=0; i<fi le_size; i++)
 MP3_SDI_Write(Buff erLarge[i]);
 }
 }
}

Example 1: Program to demonstrate operation of Smart MP3 module

... making it simple

Code for this example written for PIC® microcontrollers in C, Basic and Pascal as
well as the programs written for dsPIC® and AVR® microcontrollers can be found
on our web site: www.mikroe.com/en/article/

buff er content is encoded before the microcontroller manages to read
the next part of the fi le from the card and write it in the buff er, which will
cause the sound to be discontinuous. If this happens, we can reduce the
MP3 fi le’s bitrate or use a quartz-crystal of frequency higher than 8MHz. Re-
fer to Schematic 1.
Anyway, you don’t have to worry about this as our program has been
tested on several microcontroller families with diff erent crystal values
and it is able to decode MP3 fi les of average and high quality. On the
other hand, a low bitrate means that buff er decoder is fi lled with sound
of longer duration. It may happen that decoder doesn’t decode the buf-
fer content before we try to reload it. In order to avoid this, it is neces-
sary to make sure that decoder is ready to receive a new data before it
has been sent. In other words, it is necessary to wait until decoder’s data
request signal (DREQ) is set to logic one (1).

Enhancements
This example may also be extended after being tested. The DREQ sig-
nal can be periodically tested. A routine for volume control or built-in
Bass/Treble enhancer control etc. may be included in the program as
well. The MMC library enables us to select a fi le with diff erent name. In
this way it is possible to create a set of MP3 messages, sounds or songs
to be used in further/other applications and send appropriate MP3 fi le
to the decoder depending on the needs.

Below is a list of ready to use functions contained in the Mmc_FAT16
Library. This library is integrated in mikroC PRO for PIC compiler.

mikroC PRO

for PIC

Writte
n in compiler

SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD www.mikroe.com

Microchip®, logo and combinations thereof, PIC® and others are registered trademarks or trademarks of Microchip Corporation or its subsidiaries.
Other terms and product names may be trademarks of others.

MP3 player

 * Mmc_FAT16 functions used in program

Mmc_Fat_Append() Write at the end of the fi le
Mmc_Fat_Assign()* Assign fi le for FAT operations
Mmc_Fat_Delete() Delete fi le
Mmc_Fat_Get_File_Date() Get fi le date and time
Mmc_Fat_Get_File_Size() Get fi le size
Mmc_Fat_Get_Swap_File() Create a swap fi le
Mmc_Fat_Init()* Init card for FAT operations
Mmc_Fat_QuickFormat()
Mmc_Fat_Read()* Read data from fi le
Mmc_Fat_Reset()* Open fi le for reading
Mmc_Fat_Rewrite() Open fi le for writing
Mmc_Fat_Set_File_Date() Set fi le date and time
Mmc_Fat_Write() Write data to fi le

Spi_Init_Advanced() Initialize microcontroller SPI module

Other mikroC for PIC functions used in program:

Schematic 1. Connecting the Smart MP3 module to a PIC18F4520

GO TO
MP3 English_C_PIC.indd 75MP3 English C PIC indd 75 3/12/2009 1:09:14 PM3/12/2009 1:09:14 PM

