5-

o

DEVELOPMENT TOOLS | COMPILERS I BOOKS

;/§ ﬁ@]e“gp:cs @b

Eeiix;i-useauu :
Fi Fi:ﬂﬂ’ﬁﬂ!ﬂ 15

& Hmnmumm—e
murm,.,'

3 ~'“.-:=iﬂ=5=%N-Qﬂ""*-wnan:q

sl - msmmwm

.
-,

By Milan Rajic
MikroElektronika - Software Department

Finndi A
O <
Tdddddddd
Ll
€C

lJIllI?!
éauaua
-
Hm i .:DM’I
Wi =
.' e

S | Waawsena hee

Biiiiag—>"
B4 i e

Uuuuu. 100
ﬂ“ﬂh‘

= ‘?3!!67!

Now you need an

SmartMP3 module connected to
EasyPIC5 Development System

The use of MP3 format caused a revolution in digital sound compression technology by enabling audio files to
be several times smaller. If you want audio messages or music to be part of your project then you can easily make
it true. You just need any standard MMC or SD memory card, a few chips and a little time...

Before we start, it is necessary to format
MMC card and save the sound1.mp3
file on it (the card should be formatted
in FAT16, i.e. FAT format).

The quality of sound coded in MP3 for-
mat depends on sampling rate and bit-
rate. Similar to an audio CD, most MP3
files are sampled at the frequency of
44.1 kHz. The MP3 file’s bitrate indicates
the quality of compressed audio com-
paring to the original uncompressed
one, i.e. its fidelity. A bitrate of 64 kbit/s
is sufficient for speech reproduction,
while it has to be 128 kbit/s or more for
music reproduction. In this example a
music file with a bitrate of 128 kbit/s is
used.

Hardware

The sound contained in this file is coded
in the MP3 format so that an MP3 de-
coder is needed for its decoding. In our
example, the VS1011E chip is used for
this purpose. This chip decodes MP3 re-
cord and performs digital-to-analog con-
version of the signal in order to produce

a signal that can be brought to audio
speakers over a small audio amplifier.

Considering that MMC/SD cards use
sections of 512 bytes in size, a micro-
controller with 512 byte RAM or more is
needed for the purpose of controlling
the operation of MP3. We have chosen
the PIC18F4520 with 1536 byte RAM.

Software

The program controlling the operation
of this device can be broken up into
five steps:

PIC18F4520

—

MP3
Decoder

i

VS1011E

Figure 1. Block diagram of Smart MP3 module
connected to a PIC 18F4520

Advertising article by MikroElektronika www.mikroe.com

mikroC PRO®

is registered trademark of MikroElektronika. All rights reserved.

Step 1: Initialization of the SPI module
of the microcontroller.

Step 2: Initialization of the compiler’s
Mmc_FAT16 library, which
enables MP3 files to be read from
MMC or SD cards.

Step 3: Reading a part of file.

Step 4: Sending data to the buffer of
MP3 decoder.

Step 5. If the end of the file is not
reached, jump to step 3.

Testing

It is recommended to start testing
device operation with lower bitrate
and increase it gradually. The buffer
of MP3 decoder is 2048 bytes in size.
If the buffer is loaded with a part of
MP3 file with 128 kbit/s bitrate, it will
contain twice the sound samples than
when it is loaded with a part of file
with 256 kbit/s bitrate. Accordingly,
if the bitrate of the file is lower it will

take twice as long to encode the buf-

fer content. If we over increase the
bitrate of the file it may happen that

000 Wﬂiw& SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD www.mikroe.com
MMC CARD vee:ss

Vees.s FERRITE
= MMCCS#-3.3 BEAD
o MOSI-3.3 :
GND — MP3-RST#-3.3 l _|_
33?2 . SCK-3.3 UsioLiE 100F |100nF
oD [| Detess— Tl DREQ DVDD
Dout ~oaas 3T DOLK DGND [+
Soricy sl SDA xRESET [[Juok
—— 2 BSYNC AGND [1-4 LEFT
. PIC18F4520 :EE DVDD LEFT [}
vee 1K o — L i DGND AVDD [t
o—F Ll MCLR/RE3 PGD/RB7|] d ﬂ:bo Eg’ﬁg %4
glog ™ e -
L 8 ccu.2 1] DGND AVDD [t
1oonF| LI RA2 RB4 || 2 e Sy 2] XCS AGND ¢ | o100k
= [| RA3 RB3]] vosi33 |1 SOHK TEST2 I
ml | 22pF 22pF MISO-3.3 H 1| 100nF
Ll RA4 RB2 || —_— == {] sO TESTO [==
[rRA5 RB1]
[REO RBO[] e —_ -_ -
L| RE1 VCC| o DREQ-3.3
vee Ll RE2 GND :1 vce-3.3 vee
| VCC RD7 | | 74LVCC3245 74LVCC3245 +5V 0—0 VCC
L] eND RD6 [] e vee e
1 eseime RDs [l VCCA vccg %—o vee 3.30—_% VCCA VCCB ;
[L] DIR N DIR NC 3x1K
5 E n IC-CS#-3.3 =
(] 0SC2RAG RD4 [] fao oE Wacsras 020 OEMumecss
MMcCst H Roo RC7 M — i Bol | oreg MP3-RSTZ-3.3 | 1| b B0 Fwpscsz * |1
[RC1 RC6 [1 (MISO-3.3 743 82 [0 SCK3.3 A3 B2 A [MP3-RST# 1
] RC2 RC5[JMosL, QM B N O i
3.
[l rRC3 RC4 M0 Eﬁg E‘; % ME ﬁg B4 :}:}: BSYNC MC33269DT-3.3
f RDO RD3 [1_S0ATA) a7 el SDATA-3.3 Har Eg FociK
r rRD1 RD2 [1-Dik N GND B7 [1 +-{|GND By [0
L =\ GND GND j»_{GND GND(}4
\ ——
Schematic 1. Connecting the Smart MP3 module to a PIC18F4520 Example 1. Program to demonstrate operation of Smart MP3 module
(1\
char filename[14] ="sound1.mp3"; // Set File name

buffer content is encoded before the microcontroller manages to read | unsignediong b flesie;

the next part of the file from the card and write it in the buffer, which will | e fetebuffer 32032) BuffertorgelBUFFER SIZE)

cause the sound to be discontinuous. If this happens, we can reduce the | 5. ,Mme;Shi pelect Direction at TRISCO bi;

MP3 files bitrate or use a quartz-crystal of frequency higher than 8MHz.Re- | “Rr by o erioned &t J/Set BSYNC before sending the frst bt
. RD2_bit=0; RD3_bit=data_; RD2_bit=1; data_>>=1; // Send data_LSB, data_.0
fer to Schematic 1. RD2 bit=0; RD3 bit=data’ RD2bit=1; data >>=1. //Senddata i

Anyway, you don't have to worry about this as our program has been E%EEEE RDS bit=data ;RO bit=1; g;%fgg;’?caﬁe;'fg?gdé"dgigeéew"d .
tested on several microcontroller families with different crystal values | fo2bit-0 B3 bit—data i RD2'bit=1; data >>-1i) fend cote 4
and it is able to decode MP3 files of average and high quality. On the | [30i=0 BIdizia: BEoizh d s /i s
other hand, a low bitrate means that buffer decoder is filled with sound | ,*%*t=0

of longer duration. It may happen that decoder doesn't decode the buf- | voidiips Sci Wite(char address, unsigned nt data_in)

fer content before we try to reload it. In order to avoid this, it is neces- §§I1}iﬁ{§2?§é%$£ss). I/ enG WAITE command

sary to make sure that decoder is ready to receive a new data before it | SeiWritedatain>>8; //Send High byte

SPI1_Write(data_in); // Send Low byte
iti i i ’ RCT hit=1; // deselect MP3 SCI
has been sent. In other words, it is necessary to wait until decoder’s data RObi=t; e o1k dotasheet chapter 541

request signal (DREQ) is set to logic one (1).

// Reads words_count words from MP3 SCI
void MP3_SCI_Read(char start_address, char words_count, unsigned int *data_buffer) {
unsigned int temp;

bit=0;
Enhancements ggﬁjwnrite[%moa); e 1o HEAD cormand
This example may also be extended after being tested. The DREQ sig- | whie(words count); - 1/ vead words_count words byte per byte

. . " le 1 =SPI1_Read(0);
nal can be periodically tested. A routine for volume control or built-in | tmp<cg;

N R temp += SPI1_Read(0);
Bass/Treble enhancer control etc. may be included in the program as *(data_buffer-+) = temp;

. e B) it =1
wgll. The.N_IMC Ilprary enables us to select a file with different name. In RO bl e S o 001K datashet chapter 5.4
this way it is possible to create a set of MP3 messages, sounds or Songs |}y e byt to o3 501
to be used in further/other applications and send appropriate MP3 file | Y a5 b datat /7 wait until DREQ becomes

SW_SPI_Wirite(data);

}

// Write 32 bytes to MP3 SDI

voir(‘i MP3_SDI_Write_32(char *data_) {
chari;

to the decoder depending on the needs.

Below is a list of ready to use functions contained in the Mmc_FAT16 MO b=y gy, "t DREQ becomes
H . . o e . H — for (i=0; i<32; i++, _SPI_Write(data_[i]);
Library. This library is integrated in mikroC PRO for PIC compiler. b
et cloc|
; void Set_Clock(unsigned int clock_khz, char doubler) {
(5 Liorary Menager ¥ Cfl?dCLM z):IZ; " l?h | // calculate value
"Nl n if (doubler) clock_khz |= 0x8000;
2% O0H MP3_SCI_Write(0x03, clock_khz); // Write value to CLOCKF register
e A Mmc_Fat_Append() Write at the end of the file 3/oid Init) ¢
[Keypadaxa Mmc_Fat_Assign()* Assign file for FAT operations ADCONT |= OxOF; //setall AN pins to digital
[[JLed_Constants y RD2_bit=0; RD3_bit=0; // Clear SW SPI SCK and SDO
Cied Mmc_Fat_Delete() Delete file FT{rélsobz,bit = 0; TRISD3_bit = 0; /; Set sw SPI pin glsrecﬂons
. . . 1_bit=1; // Deselect MP3_(
manch:::; Mmc_Fat_Get_File_Date() Get file date and time TRISC1_bit = 0; // Configure MP3_CS as output
7 M":c Fat_Append Mmc_Fat_Get_File_Size() Get file size TRIS_CI)ZIil:[t‘I;: 0; % geotn’%/‘gpjreRﬁﬂLgTRST as output
Mme_Fat_Assign Mmc_Fat_Get_Swap_File() Create a swap file ;lng&blto: 1 % E‘Onﬁ%lgryeNDcREQ asinput
DI d ear
M'"Uﬂ'fze'e'e Mmc_Fat_Init()* Init card for FAT operations) TRISD1_bit=0; // Configure BSYNC as output
Mmc_Fat_Get_File_Date .
Mmc_Fat_Get_File_Size Mmc_Fat_QuickFormat() /" ngst\/‘ﬁfeR Reie(;{
N 3 vold S01t_Reset
Mme_Fat_Get_Swap_File Mmc_Fat_Read(* Read data from file MP3_SCI_Write(0x00,0x0204); //Write to MODE register: set SM_RESET bit and SM_BITORD bit
Mmc_Fat_Init Mmc_Fat_Reset()* Open file for reading Delay_us(2); // Required, see VS1001k datasheet chapter 7.4
Mmc_Fat_QuickFormat S X n - while (RDO_bit ==0) ; // wait until DREQ becomes 1
Mme Fat Read Mmc_Fat_Rewrite() Open file for writing for (i=0;i<2048; i++) MP3_SDI_Write(0); // feed 2048 zeros to the MP3 SDI bus:
mmc ;at seset Mmc_Fat_Set_File_Date() Set file date and time boid main() { // main function
mc_Fat_Rewrite B : - nit();
Mme_Fat_Set_File_Date Mmc_Far_Write() Write data to file SPIT Init_Advanced(MASTER_OSC_DIV64, DATA_SAMPLE_MIDDLE, CLK_IDLE_LOW, LOW_2_HIGH);
Mmc_Fat_Write gpi‘E?‘Pl:rzspn‘Read; Set clock to 25MHz, d lock doubl
Mmc * Mmc_FAT16 functions used in program Sztflege%?ooo,o), % SS\; ﬁgs(erto 23MHz, do not use clock doubler
[] one_wire if (;V(lmLFangnKU == (08)d£|| i m ol g
if (Mmc_Fat_Assign(&filename, ssign file “sound1.mp3”
E :;:,Expander Mmc_Fat_Reset(&file_size); // Call Reset before file reading
. . . while (file_size > BUFFER SIZE) { // Send file blocks to MP3 SDI
Cpwm Other mikroC for PIC functions used in program: for (i=0; <BUFFER_SIZE; i++) // Read file block
S . f mcEBagﬁéi;aggufferLar a Send file block decod
. . - . i=0; i 32; i 1 3 o) J
3 Spi_Init_Advanced() Initialize microcontroller SPI module r\%gilelfWrite,ai(Bugf/erLalrt;:+ i*32); /7 5endfile black to mp3 decoder \el
) file_size -= BUFFER_SIZE; // Decrease file size
for (i=0; i<file_size; i++) // Send the rest of the file

. : P . . Mmc_Fat_Read(BufferLarge +i);
G O 'I'O Code for this example written for PIC® microcontrollers in C, Basic and Pascal as for (i=0; i<file_size; i++)

well as the programs written for dsPIC® and AVR® microcontrollers can be found , MP3_SDI_Write(Bufferlargeli);
on our web site: www.mikroe.com/en/article/)
Q

Microchip®, logo and combinations thereof, PIC® and others are registered trademarks or trademarks of Microchip Corporation or its subsidiaries.
Other terms and product names may be trademarks of others.

