Let’s go together through several easy steps and build a simple GUI with two buttons and two screens using the powerful Visual GLCD software.
TO OUR VALUED CUSTOMERS

I want to express my thanks to you for being interested in our products and for having confidence in MikroElektronika.

The primary aim of our company is to design and produce high quality electronic products and to constantly improve the performance thereof in order to better suit your needs.

Nebojsa Matic
General Manager

The PIC® and Windows® logos and product names are trademarks of Microchip Technology® and Microsoft® in the U.S.A. and other countries.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction to Visual GLCD software</td>
<td>4</td>
</tr>
<tr>
<td>2. What do we need?</td>
<td>5</td>
</tr>
<tr>
<td>3. New Project Wizard</td>
<td>6</td>
</tr>
<tr>
<td>- Start a new project wizard</td>
<td>6</td>
</tr>
<tr>
<td>- Specify project name and location</td>
<td>7</td>
</tr>
<tr>
<td>- Make the final check and create a new project</td>
<td>8</td>
</tr>
<tr>
<td>- Quick project configuration using Project Settings</td>
<td>9</td>
</tr>
<tr>
<td>- Select the target hardware</td>
<td>10</td>
</tr>
<tr>
<td>- Select the target compiler</td>
<td>11</td>
</tr>
<tr>
<td>4. Designing the User Interface</td>
<td>12</td>
</tr>
<tr>
<td>- Place a button on the screen</td>
<td>14</td>
</tr>
<tr>
<td>5. Building the code in the compiler</td>
<td>15</td>
</tr>
<tr>
<td>6. Uploading the firmware to MCU</td>
<td>16</td>
</tr>
<tr>
<td>7. Test on target hardware</td>
<td>17</td>
</tr>
<tr>
<td>8. What’s Next?</td>
<td>18</td>
</tr>
<tr>
<td>- Change button caption to “Next Screen >”</td>
<td>19</td>
</tr>
<tr>
<td>- Add another screen using the toolbar button</td>
<td>20</td>
</tr>
<tr>
<td>- New empty Screen2</td>
<td>21</td>
</tr>
<tr>
<td>- Place a button on Screen2</td>
<td>22</td>
</tr>
<tr>
<td>- Change button caption to “< Previous Screen”</td>
<td>23</td>
</tr>
<tr>
<td>- Add “OnClick” event code to ButtonRound2</td>
<td>24</td>
</tr>
<tr>
<td>- Add “OnClick” event code to ButtonRound1</td>
<td>25</td>
</tr>
<tr>
<td>- 5. Building the code in the compiler</td>
<td>26</td>
</tr>
<tr>
<td>- 6. Uploading the firmware to MCU</td>
<td></td>
</tr>
<tr>
<td>- 7. Test on target hardware</td>
<td></td>
</tr>
<tr>
<td>- 8. What’s Next?</td>
<td></td>
</tr>
</tbody>
</table>
1. Introduction to Visual GLCD software

Visual GLCD software is a standalone application used for rapid development of graphical user interfaces for GLCD displays. Software generates code compatible with mikroElektronika compilers: mikroC, mikroBasic and mikroPascal, for all supported MCU architectures: PIC, dsPIC30/33, PIC24, PIC32, ARM and AVR.

When first started, the window features following sections:

01 Main Toolbar
02 Object Inspector
03 Welcome Screen Buttons
04 Getting Started Links
05 Components Palette
06 Layers Window

Figure 1-1: Visual GLCD software displaying welcome screen when first started
2. What do we need?

In this tutorial we will develop a simple application with two screens. Each screen will carry a button which can be used to switch to the other screen. We will be designing our graphical interface in Visual GLCD software, and after we add user code we will use mikroC PRO for PIC compiler to build it. We will download the firmware to the EasyPIC v7 development board and test it on 128x64px GLCD with Touch Panel. Let's begin!

Figure 2-1: mikroC PRO for PIC is a powerful ANSI C compiler for popular Microchip PIC microcontrollers

Figure 2-2: EasyPIC v7 is a full-featured PIC development board with In-Circuit debugger
3. New Project Wizard

Let's start by creating a new project. On the welcome screen click the New Project button 01. A new window will appear and guide you through the process of creating a new project. The first thing we need to do is to specify the new project’s name and destination folder. Click the browse button 02 next to the edit field.

Start a new project wizard

Let’s start by creating a new project. On the welcome screen click the New Project button 01. A new window will appear and guide you through the process of creating a new project. The first thing we need to do is to specify the new project’s name and destination folder. Click the browse button 02 next to the edit field.
Specify project name and location

A new dialog window will appear. First select the destination folder where you want to store your new project. Then specify the project's name, for example, "MyFirstProject". Then click the Save button to confirm.
Make the final check and create a new project

Full project path will be shown in the edit field 06. If you want to change destination path or project name you can still do it. When you are done click the OK button 07 to create a blank new project.
Quick project configuration using Project Settings

After the project is created the **Project Settings window** will appear. We need to specify the target hardware we will be using and compiler as well.
Select the target hardware

Click the button of the first dropdown box and a list of hardware configuration patterns will appear. Each one carries complete settings of GLCD and Touch Panel connections for the target hardware. We will select EasyPIC_v7_Connectivity from the list.
Select the target compiler and confirm

Now we need to select the target compiler. We will only be able to choose among PIC compilers because our selected target hardware (EasyPIC v7) is a PIC development board. Select **mikroC PRO for PIC** and hit **OK**.
4. Designing the User Interface

So far, we have successfully created a blank new project for EasyPIC v7 development board. Graphics will be displayed on 128x64 pixel graphical display based on KS108 controller. A 4-wire resistive touch panel is placed on top of the display, thus creating a Touch Screen module. We have chosen to use mikroC PRO for PIC compiler and the code generated by Visual GLCD will be compatible with it. Let’s take a brief look at the Visual GLCD window before we begin. Here are the main sections of this window:

01 **Main Toolbar.** It features buttons with icons that depict each button’s function. Here we can open, save or export projects, add or delete screens, generate code, start the target compiler, invoke Project Settings window and much more.

02 **Current Screen.** This is the graphical representation of the active display surface. It’s the area where we will be placing components and designing graphical user interface for this project. You can add as many screens as you want. We will use just two.

03 **Object Inspector.** This window can be used to change properties of each screen and component. Change names, captions, fonts, sizes, position, add events to components (OnUp, OnDown, OnClick, OnPress) and define their behaviour.

04 **Components Pallete.** Collection of components which can be placed on screens. There are simple, basic components, such as box, circle, line, image and label, and as well as more complex components such as buttons, checkbox and progress bar.

05 **Layers.** Like in any other vector graphic editor, you can group components on layers while designing, and quickly navigate through different layers using this window.
Place a button on the screen

We will start by placing a **Rounded Button** component onto the Screen1. Just click and drag the component from the components palette and drop it over the center of the Screen1.
Change button caption to “Next Screen >”

Click the button to select it. It’s properties will be shown in Components section of the Object Inspector. Click the Caption property and change it to “Next Screen >”. Button will be instantly updated. Readjust it’s size and position as shown in the screenshot above.
Let's add another screen now. In the toolbar section locate the green round button with the white “plus” in the middle. It is used for adding screens to the project. Click this button to add a new screen.

Add another screen using the toolbar button

Let’s add another screen now. In the toolbar section locate the green round button with the white “plus” in the middle. It is used for adding screens to the project. Click this button to add a new screen.
New empty Screen2

New screen is automatically named **Screen2**. It will be initially empty. You can traverse through screens using the dropdown list in the Screens section of the Object Inspector.
Place a button on Screen2

Let’s now place a button on Screen2. As in the previous case, just click and drag the Rounded Button component from Components Palette window and drop it over the center of the Screen2. A new component named ButtonRound2 will appear.
Change button caption to “< Previous Screen”

Click the **ButtonRound2** to select it. It’s properties will be shown in Components section of the **Object Inspector**. Click the **Caption** property and change it to “**Previous Screen >**”. The button will be instantly updated.
It's time to specify the function of the buttons when clicked. In order to do that we will add `OnClick` events to both buttons. Locate the `OnClick` property of the `ButtonRound2` in the `Object Inspector` and double click it. The `User Code window` will appear. It will contain the function prototype that is automatically associated with the click event. In the function body just type the following line of code:

```
"DrawScreen(&Screen1);"
```

This code will be executed when the button is clicked, thus invoking the drawing of Screen1.
Select `ButtonRound1` component from the dropdown list in the `Components` section of the `Object Inspector` window. Double click its `OnClick` property to create and associate a corresponding function. Type the following line of code in the body of the function using the editor of `User Code window`: "DrawScreen(&Screen2);". The code will be executed when the button is clicked, thus invoking the drawing of Screen2. So, when we click the button on the first screen it will take us to the next screen, and when we click the button there it will return us to the initial screen.

Add "OnClick" event code to `ButtonRound1`
5. Building the code in the compiler

We have now successfully created a new project, designed a new graphical interface with two screens and two buttons, and defined their behaviour. All we have to do now is to generate the application code and build it with mikroC PRO for PIC compiler, assuming that you have already downloaded and installed the mikroC PRO for PIC compiler and that you have a valid license (USB Dongle or KeyFile License). If not, please visit the compiler website, download the Demo version, and consider purchasing the license:

http://www.mikroe.com/mikroc/pic/

In Visual GLCD toolbar, locate the Start Compiler button with the green triangle. We call it the Play button. When clicked it will automatically generate code for the target compiler, and launch the compiler with the project loaded, as shown in the screenshot on Figure 5.1.

The entire code is ready to be built as soon as the compiler is started. No additional interventions are required. We can initiate project building using Build->Build [CTRL+F9] command. After the compilation and linking is done successfully, the message window should contain this information, as shown in the screenshot below.

<table>
<thead>
<tr>
<th>Line</th>
<th>Message No.</th>
<th>Message Text</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>127</td>
<td>All files Compiled in 203 ms</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1144</td>
<td>Used RAM (bytes): 376 (25%) Free RAM (bytes): 1139 (75%)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1144</td>
<td>Used ROM (bytes): 14180 (43%) Free ROM (bytes): 18588 (57%)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>125</td>
<td>Project Linked Successfully</td>
<td>MyFirstProject.ncppl</td>
</tr>
<tr>
<td>0</td>
<td>128</td>
<td>Linked in 156 ms</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>120</td>
<td>Project 'MyFirstProject.ncppl' completed: 546 ms</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>103</td>
<td>Finished successfully: 10 Sep 2012, 15:31:04</td>
<td>MyFirstProject.ncppl</td>
</tr>
</tbody>
</table>
Figure 5-1: mikroC PRO for PIC compiler loaded with our first Visual GLCD project
6. Uploading the firmware to MCU

After the project is built, the compiler produces a .HEX file which can be downloaded into the target microcontroller on the EasyPIC v7 development board. Programming of the MCU is done using on-board mikroProg USB 2.0 programmer(debugger) and the software called mikroProg Suite for PIC. Software and programmer drivers are usually installed together with the compiler. Prior to programming, make sure that EasyPIC v7 board is connected to your PC via USB programmer connector, and that USB and LINK LEDs are active. In order to initiate programming just hit [F11] button in the compiler.
7. Test on target hardware

When programming is done, the application will start and the Graphic Display will show calibration screen. This is due to the piece of code automatically created by Visual GLCD software. It will help you to calibrate the Touch panel using 2-point calibration procedure. After that, the initial screen will appear. It features the “Next Screen >” button, exactly as we have intended. One click of the button takes us to the next screen. Click of the “< Previous Screen” button brings us back to the first screen.

Figure 7-2: Our project’s user interface as it looks on target hardware
8. What’s Next?

We have successfully created together your first project in Visual GLCD software. But this is only the first step. You can now continue on your own, but will always have our help and support along the way.

Projects

Choose the development board and compiler and you are ready to start writing your projects. We have equipped Visual GLCD with dozens of examples that demonstrate the use of every single feature of the software. There are interesting examples for each supported board. They are an excellent starting point for your future projects. Just load the example, read well commented code, and see how it works on hardware. Click the Open example button located on the welcome screen to browse through the Projects folder:

\Visual GLCD\Projects\

Community

If you want to find answers to your questions on many interesting topics we invite you to visit our forum at http://www.mikroe.com/forum and browse through more than 175 thousand posts. You are likely to find just the right information for you. On the other hand, if you want to download free projects and libraries, or share your own code, please visit the Libstock™ website. With user profiles, you can get to know other programmers, and subscribe to receive notifications on their code.

http://www.libstock.com/

Support

We all know how important to have someone to rely on in moments when we are stuck with our projects, facing a deadline, or when we just want to ask a simple, basic question, that’s pulling us back for a while. We do understand how important this is and therefore our Support Department is one of the pillars upon which our company is based. MikroElektronika offers Free Tech Support to the end of product lifetime, so if something goes wrong, we are ready and willing to help!

http://www.mikroe.com/esupport/
DISCLAIMER

All the products owned by MikroElektronika are protected by copyright law and international copyright treaty. Therefore, this manual is to be treated as any other copyright material. No part of this manual, including product and software described herein, may be reproduced, stored in a retrieval system, translated or transmitted in any form or by any means, without the prior written permission of MikroElektronika. The manual PDF edition can be printed for private or local use, but not for distribution. Any modification of this manual is prohibited. MikroElektronika provides this manual ‘as is’ without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties or conditions of merchantability or fitness for a particular purpose.

MikroElektronika shall assume no responsibility or liability for any errors, omissions and inaccuracies that may appear in this manual. In no event shall MikroElektronika, its directors, officers, employees or distributors be liable for any indirect, specific, incidental or consequential damages (including damages for loss of business profits and business information, business interruption or any other pecuniary loss) arising out of the use of this manual or product, even if MikroElektronika has been advised of the possibility of such damages. MikroElektronika reserves the right to change information contained in this manual at any time without prior notice, if necessary.

HIGH RISK ACTIVITIES

The products of MikroElektronika are not fault - tolerant nor designed, manufactured or intended for use or resale as on - line control equipment in hazardous environments requiring fail - safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life support machines or weapons systems in which the failure of Software could lead directly to death, personal injury or severe physical or environmental damage (‘High Risk Activities’). MikroElektronika and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

TRADEMARKS

The MikroElektronika name and logo, the MikroElektronika logo, mikroC™, mikroBasic™, mikroPascal™, mikroProg™, EasyPIC™, SmartGLCD™ and Visual GLCD™ are trademarks of MikroElektronika. All other trademarks mentioned herein are property of their respective companies. All other product and corporate names appearing in this manual may or may not be registered trademarks or copyrights of their respective companies, and are only used for identification or explanation and to the owners’ benefit, with no intent to infringe.

Copyright © MikroElektronika, 2012, All Rights Reserved.
If you want to learn more about our products, please visit our website at www.mikroe.com. If you are experiencing some problems with any of our products or just need additional information, please place your ticket at www.mikroe.com/esupport. If you have any questions, comments or business proposals, do not hesitate to contact us at office@mikroe.com.